login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290106
a(1) = 1; for n > 1, if n = Product prime(k)^e(k), then a(n) = Product (k)^(e(k)-1).
4
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 2, 3, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1
OFFSET
1,9
FORMULA
Multiplicative with a(prime(k)^e) = k^(e-1).
a(n) = A003963(n) / A156061(n).
a(n) = A003963(A003557(n)) = A003963(n/A007947(n)).
EXAMPLE
For n = 21 = 3*7 = prime(2)^1 * prime(4)^1, a(n) = 2^0 * 4^0 = 1*1 = 1.
For n = 360 = 2^3 * 3^2 * 5^1 = prime(1)^3 * prime(2)^2 * prime(3)^1, a(n) = 1^2 * 2^1 * 3^0 = 1*2*1 = 2.
MATHEMATICA
Table[If[n == 1, 1, Apply[Times, Map[PrimePi[#1]^#2 & @@ # &, #]] / Apply[Times, PrimePi[#[[All, 1]] ]]] &@ FactorInteger@ n, {n, 120}] (* Michael De Vlieger, Aug 14 2017 *)
PROG
(Scheme)
(define (A290106 n) (/ (A003963 n) (A156061 n)))
(define (A290106 n) (if (= 1 n) 1 (* (expt (A055396 n) (- (A067029 n) 1)) (A290106 (A028234 n)))))
CROSSREFS
Differs from A290104 for the first time at n=21.
Sequence in context: A360157 A298735 A055090 * A359433 A349340 A326297
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Aug 13 2017
STATUS
approved