login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290109
a(1) = 1; for n > 1, a(n) = x1^(x2^(x3^(x4^...))) where x1, x2, ... are the exponents of the primes present (listed from the smallest prime to the largest) in the prime factorization of n.
2
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 9, 1, 1, 1, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 4, 1, 1, 1, 3, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 3
OFFSET
1,4
LINKS
FORMULA
a(1) = 1; for n > 1, a(n) = A067029(n) ^ a(A028234(n)).
EXAMPLE
For n = 300 = 2^2 * 3^1 * 5^2 we have a(300) = 2^(1^2) = 2.
For n = 600 = 2^3 * 3^1 * 5^2 we have a(600) = 3^(1^2) = 3.
PROG
(Scheme) (define (A290109 n) (if (= 1 n) 1 (expt (A067029 n) (A290109 (A028234 n))))) ;; Antti Karttunen, Aug 27 2017
CROSSREFS
After a(1) = 1 differs from A087179 for the next time at n=300.
Sequence in context: A371733 A067029 A087179 * A302045 A302035 A307907
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 27 2017
STATUS
approved