The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290107 a(1) = 1; for n > 1, a(n) = product of distinct exponents in the prime factorization of n. 5
 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 FORMULA a(n) = A156061(A181819(n)). EXAMPLE For n = 36 = 2^2 * 3^2, the only distinct exponent that occurs is 2, thus a(36) = 2. For n = 144 = 2^4 * 3^2, the distinct exponents are 2 and 4, thus a(144) = 2*4 = 8. For n = 4500 = 2^2 * 3^2 * 5^3, the distinct exponents are 2 and 3, thus a(4500) = 2*3 = 6. MATHEMATICA Table[If[n == 1, 1, Apply[Times, Union[FactorInteger[n][[All, -1]] ]]], {n, 120}] (* Michael De Vlieger, Aug 14 2017 *) PROG (PARI) A290107(n) = factorback(vecsort((factor(n)[, 2]), , 8)); (Scheme) (define (A290107 n) (A156061 (A181819 n))) CROSSREFS Cf. A156061, A181819. Differs from A005361 for the first time at n=36. Differs from A072411 for the first time at n=144, and also from A157754 for the second time (after the initial term). Sequence in context: A324912 A157754 A072411 * A212180 A091050 A005361 Adjacent sequences:  A290104 A290105 A290106 * A290108 A290109 A290110 KEYWORD nonn AUTHOR Antti Karttunen, Aug 13 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 3 19:43 EDT 2020. Contains 333198 sequences. (Running on oeis4.)