The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212180 Number of distinct second signatures (cf. A212172) represented among divisors of n. 6
 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Completely determined by the exponents >=2 in the prime factorization of n (cf. A212172, A212173). The fraction of the divisors of n which have a given second signature {S} is also a function of n's second signature. For example, if n has second signature {3,2}, it follows that 1/3 of n's divisors are squarefree. Squarefree numbers are represented with 0's in A212172, in accord with the usual OEIS custom of using 0 for nonexistent elements; in comments, their second signature is represented as { }. LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 EXAMPLE The divisors of 72 represent a total of 5 distinct second signatures (cf. A212172), as can be seen from the exponents >= 2, if any, in the canonical prime factorization of each divisor: { }: 1, 2 (prime), 3 (prime), 6 (2*3) {2}: 4 (2^2), 9 (3^2), 12 (2^2*3), 18 (2*3^2) {3}: 8 (2^3), 24 (2^3*3) {2,2}: 36 (2^2*3^2) {3,2}: 72 (2^3*3^2) Hence, a(72) = 5. MATHEMATICA Array[Length@ Union@ Map[Sort@ Select[FactorInteger[#][[All, -1]], # >= 2 &] &, Divisors@ #] &, 88] (* Michael De Vlieger, Jul 19 2017 *) PROG (PARI) A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011 A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); } \\ This function from Charles R Greathouse IV, Aug 13 2013 A212173(n) = A046523(A057521(n)); A212180(n) = { my(vals = Set()); fordiv(n, d, vals = Set(concat(vals, A212173(d)))); length(vals); }; \\ Antti Karttunen, Jul 19 2017 (Python) from sympy import factorint, divisors, prod def P(n): return sorted(factorint(n).values()) def a046523(n):     x=1     while True:         if P(n)==P(x): return x         else: x+=1 def a057521(n): return 1 if n==1 else prod(p**e for p, e in factorint(n).items() if e != 1) def a212173(n): return a046523(a057521(n)) def a(n):     l=[]     for d in divisors(n):         x=a212173(d)         if not x in l:l+=[x, ]     return len(l) print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 19 2017 CROSSREFS Cf. A212172, A085082, A088873, A181796, A182860, A212173, A212642, A212643, A212644. Sequence in context: A157754 A072411 A290107 * A091050 A005361 A303915 Adjacent sequences:  A212177 A212178 A212179 * A212181 A212182 A212183 KEYWORD nonn AUTHOR Matthew Vandermast, Jun 04 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 21:57 EDT 2021. Contains 343117 sequences. (Running on oeis4.)