The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A360156 a(n) is the sum of the even unitary divisors of 2*n. 2
 2, 4, 8, 8, 12, 16, 16, 16, 20, 24, 24, 32, 28, 32, 48, 32, 36, 40, 40, 48, 64, 48, 48, 64, 52, 56, 56, 64, 60, 96, 64, 64, 96, 72, 96, 80, 76, 80, 112, 96, 84, 128, 88, 96, 120, 96, 96, 128, 100, 104, 144, 112, 108, 112, 144, 128, 160, 120, 120, 192, 124, 128 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) is the unitary analog of A146076(2*n). LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 Octavio A. Agustín-Aquino, Wang-Sun Formula in GL(Z/2kZ), INTEGERS, Vol. 23 (2023), #A37; arXiv preprint, arXiv:2207.14495 [math.NT], 2022. FORMULA a(n) = Sum_{even d|(2*n), gcd(d, 2*n/d)=1} d. a(n) = A034448(2*n) - A192066(2*n). a(n) = A192066(2*n) - A328258(2*n). a(n) = A171977(n) * A192066(n). Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / (7*zeta(3)). Dirichlet g.f. of b(n): (zeta(s)*zeta(s-1)/zeta(2*s-1))*(2^(s+1)-2)/(2^(2*s)-2), where b(n) is the sum of the even unitary divisors of n: b(n) = a(n/2) if n is even and 0 otherwise. MATHEMATICA usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; a[n_] := Module[{e = IntegerExponent[n, 2]}, 2^(e + 1) * usigma[n/2^e]]; Array[a, 100] PROG (PARI) usigma(n) = {my(f = factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + 1)} ; a(n) = {my(e = valuation(n, 2)); (1 << (e+1)) * usigma(n >> e); } CROSSREFS Cf. A002117, A034448, A100008, A146076, A171977, A192066, A328258. Sequence in context: A103224 A198346 A078750 * A054785 A236924 A266575 Adjacent sequences: A360153 A360154 A360155 * A360157 A360158 A360159 KEYWORD nonn,easy AUTHOR Amiram Eldar, Jan 28 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 23:57 EDT 2024. Contains 374905 sequences. (Running on oeis4.)