The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193773 Number of ways to write n as 2*x*y - x - y with 1 <= x <= y. 5
 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 2, 1, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 3, 1, 2, 2, 1, 2, 2, 2, 1, 3, 1, 1, 4, 1, 1, 2, 1, 2, 3, 2, 2, 2, 2, 1, 2, 1, 2, 4, 1, 1, 2, 2, 2, 3, 1, 1, 3, 2, 1, 2, 2, 1, 4, 1, 2, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS a(A005097(n)) = 1; for n > 1: a(A047845(n)) > 1. - Reinhard Zumkeller, Jan 02 2013 Number of ways to write 2*n+1 as a difference of two squares. Note that 2*(2*x*y - x - y) + 1 = (2*x - 1) * (2*y - 1) = (y + x - 1)^2 - (y - x)^2. - Michael Somos, Dec 23 2018 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 FORMULA a(n) = ceiling(A000005(2*n+1) / 2). - Michael Somos, Dec 23 2018 EXAMPLE G.f. = 1 + x + x^2 + x^3 + 2*x^4 + x^5 + x^6 + 2*x^7 + x^8 + x^9 + 2*x^10 + ... - Michael Somos, Dec 23 2018 MATHEMATICA a[ n_] := If[ n < 0, 0, Ceiling[ DivisorSigma[0, 2 n + 1] / 2]]; (* Michael Somos, Dec 23 2018 *) PROG (Haskell) a193773 n = length [() | x <- [1 .. n + 1],                          let (y, m) = divMod (x + n) (2 * x - 1),                          x <= y, m == 0] (PARI) {a(n) = if(n < 0, 0, (numdiv(2*n+1) + 1)\2)}; /* Michael Somos, Dec 23 2018 */ CROSSREFS Cf. A000005, A005097, A047845, A125203. Sequence in context: A305426 A322811 A091853 * A091304 A049847 A255274 Adjacent sequences:  A193770 A193771 A193772 * A193774 A193775 A193776 KEYWORD nonn AUTHOR Reinhard Zumkeller, Jan 02 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 16 15:17 EST 2020. Contains 331961 sequences. (Running on oeis4.)