login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193771
Expansion of 1 / (1 - x - x^3 + x^6) in powers of x.
1
1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 17, 23, 31, 41, 54, 72, 96, 127, 168, 223, 296, 392, 519, 688, 912, 1208, 1600, 2120, 2809, 3721, 4929, 6530, 8651, 11460, 15181, 20111, 26642, 35293, 46753, 61935, 82047, 108689, 143982, 190736, 252672, 334719, 443408, 587391
OFFSET
0,4
FORMULA
G.f.: 1 / (1 - x - x^3 + x^6) = 1 / (1 - x / (1 - x^2 / (1 + x^2 / (1 - x / (1 + x / (1 + x^2 / (1 - x^2))))))).
a(n) = a(n-1) + a(n-3) - a(n-6) for all n in Z.
Convolution of A008621 and A000931. PSUM transform of A017818.
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 7*x^7 + 10*x^8 + 13*x^9 + ...
MATHEMATICA
CoefficientList[Series[1/(1-x-x^3+x^6), {x, 0, 50}], x] (* or *) LinearRecurrence[ {1, 0, 1, 0, 0, -1}, {1, 1, 1, 2, 3, 4}, 50] (* Harvey P. Dale, Jul 25 2017 *)
PROG
(PARI) {a(n) = if( n<0, n = -n; polcoeff( - x^6 / (1 - x^3 - x^5 + x^6) + x * O(x^n), n), polcoeff( 1 / (1 - x - x^3 + x^6) + x * O(x^n), n))};
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x-x^3+x^6))); // G. C. Greubel, Aug 10 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 01 2013
STATUS
approved