login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369379
Number of Dabbaghian-Wu pandiagonal Latin squares of order 2n+1 with the first row in order.
2
1, 0, 0, 4, 0, 0, 72, 0, 0, 108, 0, 0, 4, 0, 0, 180, 0, 3, 216, 0, 0, 252, 0, 0, 264, 0, 0, 0, 0, 0, 360, 0, 5, 396, 0, 0, 432, 0, 0, 468, 0, 0, 0, 0, 0, 868, 0, 5, 576, 0
OFFSET
1,4
COMMENTS
A pandiagonal Latin square is a Latin square in which the diagonal, antidiagonal and all broken diagonals and antidiagonals are transversals.
A Dabbaghian-Wu pandiagonal Latin square (see A368027) is a special type of pandiagonal Latin square (see A342306). Such squares are constructed from cyclic diagonal Latin squares (see A338562) for prime orders n=6k+1 (see Dabbaghian and Wu article) using a polynomial algorithm based on permutation of some values in Latin square. For other orders (25, 35, 49, ...) this algorithm also ensures correct pandiagonal Latin squares.
LINKS
Vahid Dabbaghian and Tiankuang Wu, Constructing non-cyclic pandiagonal Latin squares of prime orders, Journal of Discrete Algorithms, Vol. 30, 2015, pp. 70-77, doi: 10.1016/j.jda.2014.12.001.
EXAMPLE
n=13=6*2+1 (prime order):
.
0 1 2 3 4 5 6 7 8 9 10 11 12
2 3 0 1 11 12 8 4 10 7 5 6 9
4 10 11 2 8 1 3 0 12 6 9 7 5
11 5 9 7 10 0 12 1 3 2 8 4 6
8 7 10 5 9 6 11 2 0 4 3 12 1
12 0 4 6 7 2 9 10 5 11 1 8 3
1 6 12 8 3 4 5 11 9 10 7 2 0
9 2 3 4 12 8 1 6 7 5 0 10 11
10 11 5 0 1 3 7 8 4 12 6 9 2
5 9 1 11 2 10 0 12 6 8 4 3 7
6 8 7 10 0 11 2 9 1 3 12 5 4
7 4 6 12 5 9 10 3 2 0 11 1 8
3 12 8 9 6 7 4 5 11 1 2 0 10
.
n=19=6*3+1 (prime order):
.
0 1 2 3 4 5 6 7 8 9 10 11 12
2 3 0 1 11 12 8 4 10 7 5 6 9
4 10 11 2 8 1 3 0 12 6 9 7 5
11 5 9 7 10 0 12 1 3 2 8 4 6
8 7 10 5 9 6 11 2 0 4 3 12 1
12 0 4 6 7 2 9 10 5 11 1 8 3
1 6 12 8 3 4 5 11 9 10 7 2 0
9 2 3 4 12 8 1 6 7 5 0 10 11
10 11 5 0 1 3 7 8 4 12 6 9 2
5 9 1 11 2 10 0 12 6 8 4 3 7
6 8 7 10 0 11 2 9 1 3 12 5 4
7 4 6 12 5 9 10 3 2 0 11 1 8
3 12 8 9 6 7 4 5 11 1 2 0 10
.
n=25=6*4+1 (nonprime order):
.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
3 4 15 6 7 8 9 5 11 12 13 14 0 16 17 18 19 10 21 22 23 24 20 1 2
6 7 8 9 10 11 12 13 14 15 16 17 18 19 0 21 22 23 24 5 1 2 3 4 20
9 5 11 12 13 14 10 16 17 18 19 20 21 22 23 24 0 1 2 3 4 15 6 7 8
12 13 14 0 16 17 18 19 10 21 22 23 24 5 1 2 3 4 20 6 7 8 9 15 11
15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
18 19 10 21 22 23 24 20 1 2 3 4 15 6 7 8 9 5 11 12 13 14 0 16 17
21 22 23 24 5 1 2 3 4 20 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0
24 0 1 2 3 4 15 6 7 8 9 5 11 12 13 14 10 16 17 18 19 20 21 22 23
2 3 4 20 6 7 8 9 15 11 12 13 14 0 16 17 18 19 10 21 22 23 24 5 1
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4
8 9 5 11 12 13 14 0 16 17 18 19 10 21 22 23 24 20 1 2 3 4 15 6 7
11 12 13 14 15 16 17 18 19 0 21 22 23 24 5 1 2 3 4 20 6 7 8 9 10
14 10 16 17 18 19 20 21 22 23 24 0 1 2 3 4 15 6 7 8 9 5 11 12 13
17 18 19 10 21 22 23 24 5 1 2 3 4 20 6 7 8 9 15 11 12 13 14 0 16
20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
23 24 20 1 2 3 4 15 6 7 8 9 5 11 12 13 14 0 16 17 18 19 10 21 22
1 2 3 4 20 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0 21 22 23 24 5
4 15 6 7 8 9 5 11 12 13 14 10 16 17 18 19 20 21 22 23 24 0 1 2 3
7 8 9 15 11 12 13 14 0 16 17 18 19 10 21 22 23 24 5 1 2 3 4 20 6
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9
13 14 0 16 17 18 19 10 21 22 23 24 20 1 2 3 4 15 6 7 8 9 5 11 12
16 17 18 19 0 21 22 23 24 5 1 2 3 4 20 6 7 8 9 10 11 12 13 14 15
19 20 21 22 23 24 0 1 2 3 4 15 6 7 8 9 5 11 12 13 14 10 16 17 18
22 23 24 5 1 2 3 4 20 6 7 8 9 15 11 12 13 14 0 16 17 18 19 10 21
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Eduard I. Vatutin, Jan 22 2024
STATUS
approved