login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071608
Number of complete mappings f(x) of Z_{2n+1} such that -(-id+f)^(-1)=f.
2
1, 1, 0, 4, 0, 0, 80, 48, 0, 3328, 1920, 0, 270080, 131328, 0, 3257736, 16379904, 0, 5750476800, 2942582784, 0, 1376249266176, 706948005888, 0, 430415593603072
OFFSET
0,4
COMMENTS
A complete mapping of a cyclic group (Zn,+) is a permutation f(x) of Zn such that f(0)=0 and that f(x)-x is also a permutation.
REFERENCES
Y. P. Shieh, "Partition strategies for #P-complete problems with applications to enumerative combinatorics", PhD thesis, National Taiwan University, 2001.
Y. P. Shieh, J. Hsiang and D. F. Hsu, "On the enumeration of Abelian k-complete mappings", vol. 144 of Congressus Numerantium, 2000, pp. 67-88.
EXAMPLE
f(x)=3x in (Z_7,+) is a complete mapping of Z_7 since f(0)=0 and f(x)-x (=2x) is also a permutation of Z_7. And -(-id+f)^(-1)(x)=f(x).
CROSSREFS
Cf. A003111.
Sequence in context: A375556 A369379 A358292 * A013451 A013462 A326862
KEYWORD
nonn
AUTHOR
J. Hsiang, D. F. Hsu and Y. P. Shieh (arping(AT)turing.csie.ntu.edu.tw), Jun 03 2002
STATUS
approved