The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A071607 Number of strong complete mappings of the cyclic group Z_{2n+1}. 5
 1, 0, 2, 4, 0, 8, 348, 0, 8276, 43184, 0, 5602176, 78309000, 0, 20893691564, 432417667152, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A strong complete mapping of a cyclic group (Z_n,+) is a permutation f(x) of Z_n such that f(0)=0 and that f(x)-x and f(x)+x are both permutations. a(n) is the number of solutions of the toroidal n-queen problem (A007705) with 2n+1 queens and one queen in the top-left corner. Also a(n) is the number of horizontally or vertically semicyclic diagonal Latin squares of order 2n+1 with the first row in ascending order. Horizontally semicyclic diagonal Latin square is a square where each row r(i) is a cyclic shift of the first row r(0) by some value d(i) (see example). Vertically semicyclic diagonal Latin square is a square where each column c(i) is a cyclic shift of the first column c(0) by some value d(i). Cyclic diagonal Latin squares (see A123565) fall under the definition of vertically and horizontally semicyclic diagonal Latin squares simultaneously, in this type of squares each row r(i) is obtained from the previous one r(i-1) using cyclic shift by some value d. Definition from A343867 includes this type of squares but not only it. - Eduard I. Vatutin, Jan 25 2022 REFERENCES Anthony B. Evans,"Orthomorphism Graphs of Groups", vol. 1535 of Lecture Notes in Mathematics, Springer-Verlag, 1991. Y. P. Shieh, J. Hsiang and D. F. Hsu, "On the enumeration of Abelian k-complete mappings", vol. 144 of Congressus Numerantium, 2000, pp. 67-88. LINKS Table of n, a(n) for n=0..16. Jieh Hsiang, Yuh Pyng Shieh, and Yao Chiang Chen, Cyclic complete mappings counting problems, in PaPS: Problems and Problem Sets for ATP Workshop in conjunction with CADE-18 and FLoC 2002. Jieh Hsiang, YuhPyng Shieh, and YaoChiang Chen, Cyclic Complete Mappings Counting Problems, National Taiwan University 2014/8/21. D. Novakovic, Computation of the number of complete mappings for permutations, Cybernetics & System Analysis, No. 2, v. 36 (2000), pp. 244-247. I. Rivin, I. Vardi and P. Zimmermann, The n-queens problem, Amer. Math. Monthly, 101 (1994), pp. 629-639. Eduard I. Vatutin, About the horizontally and vertically semicyclic diagonal Latin squares enumeration (in Russian). Index entries for sequences related to Latin squares and rectangles. FORMULA a(n) = A007705(n)/(2*n+1). a(n) = A342990(n) / (2*n+1)!. - Eduard I. Vatutin, Mar 10 2022 EXAMPLE f(x)=2x in (Z_7,+) is a strong complete mapping of Z_7 since f(0)=0 and both f(x)-x (=x) and f(x)+x (=3x) are permutations of Z_7. From Eduard I. Vatutin, Jan 25 2022: (Start) Example of cyclic diagonal Latin square of order 13: . 0 1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 0 1 (d=2) 4 5 6 7 8 9 10 11 12 0 1 2 3 (d=4) 6 7 8 9 10 11 12 0 1 2 3 4 5 (d=6) 8 9 10 11 12 0 1 2 3 4 5 6 7 (d=8) 10 11 12 0 1 2 3 4 5 6 7 8 9 (d=10) 12 0 1 2 3 4 5 6 7 8 9 10 11 (d=12) 1 2 3 4 5 6 7 8 9 10 11 12 0 (d=1) 3 4 5 6 7 8 9 10 11 12 0 1 2 (d=3) 5 6 7 8 9 10 11 12 0 1 2 3 4 (d=5) 7 8 9 10 11 12 0 1 2 3 4 5 6 (d=7) 9 10 11 12 0 1 2 3 4 5 6 7 8 (d=9) 11 12 0 1 2 3 4 5 6 7 8 9 10 (d=11) . Example of horizontally semicyclic diagonal Latin square of order 13: . 0 1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 0 1 (d=2) 4 5 6 7 8 9 10 11 12 0 1 2 3 (d=4) 9 10 11 12 0 1 2 3 4 5 6 7 8 (d=9) 7 8 9 10 11 12 0 1 2 3 4 5 6 (d=7) 12 0 1 2 3 4 5 6 7 8 9 10 11 (d=12) 3 4 5 6 7 8 9 10 11 12 0 1 2 (d=3) 11 12 0 1 2 3 4 5 6 7 8 9 10 (d=11) 6 7 8 9 10 11 12 0 1 2 3 4 5 (d=6) 1 2 3 4 5 6 7 8 9 10 11 12 0 (d=1) 5 6 7 8 9 10 11 12 0 1 2 3 4 (d=5) 10 11 12 0 1 2 3 4 5 6 7 8 9 (d=10) 8 9 10 11 12 0 1 2 3 4 5 6 7 (d=8) (End) CROSSREFS Cf. A007705, A123565, A338620, A343867. Sequence in context: A103191 A324717 A295793 * A338620 A358645 A095059 Adjacent sequences: A071604 A071605 A071606 * A071608 A071609 A071610 KEYWORD nonn,hard,more AUTHOR J. Hsiang, D. F. Hsu and Y. P. Shieh (arping(AT)turing.csie.ntu.edu.tw), Jun 03 2002 EXTENSIONS a(15)-a(16) added using A007705 by Andrew Howroyd, May 07 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 1 15:47 EDT 2023. Contains 363074 sequences. (Running on oeis4.)