login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A338620 Number of pandiagonal Latin squares of order 2n+1 with the first row in ascending order. 3
1, 0, 2, 4, 0, 8, 12386, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
A pandiagonal Latin square is a Latin square in which the diagonal, antidiagonal and all broken diagonals and antidiagonals are transversals.
For orders n = 5, 7 and 11 all pandiagonal Latin squares are cyclic, so a(n) = A123565(2n+1) for n < 6. For n=6 (order 13), this is not true and there are 12386 inequivalent squares; of these 10 are cyclic (in all directions) and 1560 are semi-cyclic (A343867).
Pandiagonal Latin squares exist only for odd orders not divisible by 3. This is because the positions of each symbol are a solution to the toroidal n-queens problem which only has solutions for these sizes. - Andrew Howroyd, May 26 2021
LINKS
A. O. L. Atkin, L. Hay, and R. G. Larson, Enumeration and construction of pandiagonal Latin squares of prime order, Computers & Mathematics with Applications, Volume. 9, Iss. 2, 1983, pp. 267-292.
Vahid Dabbaghian and Tiankuang Wu, Constructing non-cyclic pandiagonal Latin squares of prime orders, Journal of Discrete Algorithms 30, 2015.
Vahid Dabbaghian and Tiankuang Wu, Constructing Pandiagonal Latin Squares from Linear Cellular Automaton on Elementary Abelian Groups, Journal of Combinatorial Designs 23(5).
FORMULA
a(n) >= A123565(2n+1) + A343867(n). - Andrew Howroyd, May 26 2021
a(n) = A342306(n) / (2n+1)!. - Eduard I. Vatutin, Jun 13 2021
EXAMPLE
Example of a cyclic pandiagonal Latin square of order 5:
0 1 2 3 4
2 3 4 0 1
4 0 1 2 3
1 2 3 4 0
3 4 0 1 2
Example of a cyclic pandiagonal Latin square of order 7:
0 1 2 3 4 5 6
2 3 4 5 6 0 1
4 5 6 0 1 2 3
6 0 1 2 3 4 5
1 2 3 4 5 6 0
3 4 5 6 0 1 2
5 6 0 1 2 3 4
Example of a cyclic pandiagonal Latin square of order 11:
0 1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10 0 1
4 5 6 7 8 9 10 0 1 2 3
6 7 8 9 10 0 1 2 3 4 5
8 9 10 0 1 2 3 4 5 6 7
10 0 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 10 0
3 4 5 6 7 8 9 10 0 1 2
5 6 7 8 9 10 0 1 2 3 4
7 8 9 10 0 1 2 3 4 5 6
9 10 0 1 2 3 4 5 6 7 8
For order 13 there is a square
7 1 0 3 6 5 12 2 8 9 10 11 4
2 3 4 10 0 7 6 9 12 11 5 8 1
4 11 1 7 8 9 10 3 6 0 12 2 5
6 5 8 11 10 4 7 0 1 2 3 9 12
8 9 2 5 12 11 1 4 3 10 0 6 7
3 6 12 0 1 2 8 11 5 4 7 10 9
10 0 3 2 9 12 5 6 7 8 1 4 11
1 7 10 4 3 6 9 8 2 5 11 12 0
11 4 5 6 7 0 3 10 9 12 2 1 8
5 8 7 1 4 10 11 12 0 6 9 3 2
12 2 9 8 11 1 0 7 10 3 4 5 6
9 10 11 12 5 8 2 1 4 7 6 0 3
0 12 6 9 2 3 4 5 11 1 8 7 10
that is pandiagonal but not cyclic (Dabbaghian and Wu). (End)
CROSSREFS
Cf. A071607 (rows are cyclic), A123565, A342306, A343867 (semicyclic).
Sequence in context: A324717 A295793 A071607 * A358645 A095059 A021419
KEYWORD
nonn,more,hard,changed
AUTHOR
Eduard I. Vatutin, Nov 04 2020
EXTENSIONS
Zero terms for even orders removed by Andrew Howroyd, May 26 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 13 00:40 EDT 2024. Contains 375857 sequences. (Running on oeis4.)