OFFSET
1,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..300
Eric Weisstein's World of Mathematics, King Graph
Eric Weisstein's World of Mathematics, Spanning Tree
FORMULA
Empirical g.f.: x*(56*x^7 + 7072*x^6 - 162708*x^5 + 371791*x^4 + 18080*x^3 - 49920*x^2 + 1556*x + 1) / (x^8 - 748*x^7 + 61345*x^6 - 368764*x^5 + 680848*x^4 - 368764*x^3 + 61345*x^2 - 748*x + 1). - Vaclav Kotesovec, Dec 04 2020
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
def make_nXk_king_graph(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
if i < k:
grids.append((i + (j - 1) * k, i + j * k + 1))
if i > 1:
grids.append((i + (j - 1) * k, i + j * k - 1))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A338029(n, k):
if n == 1 or k == 1: return 1
universe = make_nXk_king_graph(n, k)
GraphSet.set_universe(universe)
spanning_trees = GraphSet.trees(is_spanning=True)
return spanning_trees.len()
def A338617(n):
return A338029(n, 4)
print([A338617(n) for n in range(1, 20)])
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 29 2020
STATUS
approved