login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338617
Number of spanning trees in the n X 4 king graph.
3
1, 2304, 1612127, 1064918960, 698512774464, 457753027631164, 299940605530116319, 196531575367664678400, 128774089577828985307985, 84377085408032081020147412, 55286683084713553039968700608, 36225680193828279388607070447232, 23736274839549237072891352060244017
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, King Graph
Eric Weisstein's World of Mathematics, Spanning Tree
FORMULA
Empirical g.f.: x*(56*x^7 + 7072*x^6 - 162708*x^5 + 371791*x^4 + 18080*x^3 - 49920*x^2 + 1556*x + 1) / (x^8 - 748*x^7 + 61345*x^6 - 368764*x^5 + 680848*x^4 - 368764*x^3 + 61345*x^2 - 748*x + 1). - Vaclav Kotesovec, Dec 04 2020
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
def make_nXk_king_graph(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
if i < k:
grids.append((i + (j - 1) * k, i + j * k + 1))
if i > 1:
grids.append((i + (j - 1) * k, i + j * k - 1))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A338029(n, k):
if n == 1 or k == 1: return 1
universe = make_nXk_king_graph(n, k)
GraphSet.set_universe(universe)
spanning_trees = GraphSet.trees(is_spanning=True)
return spanning_trees.len()
def A338617(n):
return A338029(n, 4)
print([A338617(n) for n in range(1, 20)])
CROSSREFS
Column 4 of A338029.
Cf. A003696.
Sequence in context: A259321 A223302 A174558 * A274578 A031774 A031546
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 29 2020
STATUS
approved