login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of spanning trees in the n X 4 king graph.
3

%I #26 Dec 04 2020 12:04:30

%S 1,2304,1612127,1064918960,698512774464,457753027631164,

%T 299940605530116319,196531575367664678400,128774089577828985307985,

%U 84377085408032081020147412,55286683084713553039968700608,36225680193828279388607070447232,23736274839549237072891352060244017

%N Number of spanning trees in the n X 4 king graph.

%H Seiichi Manyama, <a href="/A338617/b338617.txt">Table of n, a(n) for n = 1..300</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/KingGraph.html">King Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SpanningTree.html">Spanning Tree</a>

%F Empirical g.f.: x*(56*x^7 + 7072*x^6 - 162708*x^5 + 371791*x^4 + 18080*x^3 - 49920*x^2 + 1556*x + 1) / (x^8 - 748*x^7 + 61345*x^6 - 368764*x^5 + 680848*x^4 - 368764*x^3 + 61345*x^2 - 748*x + 1). - _Vaclav Kotesovec_, Dec 04 2020

%o (Python)

%o # Using graphillion

%o from graphillion import GraphSet

%o def make_nXk_king_graph(n, k):

%o grids = []

%o for i in range(1, k + 1):

%o for j in range(1, n):

%o grids.append((i + (j - 1) * k, i + j * k))

%o if i < k:

%o grids.append((i + (j - 1) * k, i + j * k + 1))

%o if i > 1:

%o grids.append((i + (j - 1) * k, i + j * k - 1))

%o for i in range(1, k * n, k):

%o for j in range(1, k):

%o grids.append((i + j - 1, i + j))

%o return grids

%o def A338029(n, k):

%o if n == 1 or k == 1: return 1

%o universe = make_nXk_king_graph(n, k)

%o GraphSet.set_universe(universe)

%o spanning_trees = GraphSet.trees(is_spanning=True)

%o return spanning_trees.len()

%o def A338617(n):

%o return A338029(n, 4)

%o print([A338617(n) for n in range(1, 20)])

%Y Column 4 of A338029.

%Y Cf. A003696.

%K nonn

%O 1,2

%A _Seiichi Manyama_, Nov 29 2020