|
|
A295793
|
|
a(n) is the least k such that A295520(k) = n.
|
|
1
|
|
|
2, 4, 0, 8, 25, 24, 35, 34, 201, 200, 203, 202, 297, 296, 299, 298, 1335, 1334, 1333, 1332, 1331, 1330, 1329, 1328, 3295, 3294, 3293, 3292, 3291, 3290, 3289, 3288, 11749, 11748, 11761, 11760, 11745, 11744, 11765, 11764, 11757, 11756, 19623, 19622, 11753, 11752, 19619, 19618, 25475, 25474, 25473, 25472
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 0..175
|
|
EXAMPLE
|
a(3)=8 because A295520(8)=3 and this is the first appearance of 3 in A295520.
|
|
MAPLE
|
N:= 100: # to get a(0)..a(N)
A295520:= proc(n) local k;
for k from 0 do if isprime(Bits:-Xor(k, n)) then return k fi od
end proc:
V:= Array(0..N, -1):
count:= 0:
for n from 0 while count < N+1 do
r:= A295520(n);
if r <= N and V[r]=-1 then
count:= count+1; V[r]:= n
fi
od:
convert(V, list); # Robert Israel, Nov 27 2017
|
|
MATHEMATICA
|
With[{s = Array[Block[{k = 0}, While[! PrimeQ@ BitXor[k, #], k++]; k] &, 10^6]}, FirstPosition[s, #][[1]] /. 1 -> 0 & /@ Take[#, LengthWhile[Differences@ #, # == 1 &]] &@ Union@ s] (* Michael De Vlieger, Nov 27 2017 *)
|
|
CROSSREFS
|
Cf. A295520.
Sequence in context: A077624 A103191 A324717 * A071607 A338620 A095059
Adjacent sequences: A295790 A295791 A295792 * A295794 A295795 A295796
|
|
KEYWORD
|
nonn,base,look
|
|
AUTHOR
|
Robert Israel, Nov 27 2017
|
|
STATUS
|
approved
|
|
|
|