|
|
A295792
|
|
Expansion of e.g.f. Product_{k>=1} ((1 + x^k)/(1 - x^k))^(1/k).
|
|
6
|
|
|
1, 2, 6, 28, 152, 1008, 7936, 70208, 689664, 7618816, 92013824, 1202362368, 17053410304, 258928934912, 4197838491648, 72840915607552, 1334630802489344, 25799982480556032, 527187369241870336, 11292834065764450304, 253498950169144590336, 5965951790211865772032, 146341359815078034538496
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Convolution of A028342 and A168243. - Vaclav Kotesovec, Sep 07 2018
|
|
LINKS
|
Vaclav Kotesovec, Table of n, a(n) for n = 0..445
|
|
FORMULA
|
E.g.f.: exp(2*Sum_{k>=1} A001227(k)*x^k/k).
E.g.f.: exp(Sum_{k>=1} A054844(k)*x^k/k).
|
|
MAPLE
|
a:=series(mul(((1+x^k)/(1-x^k))^(1/k), k=1..100), x=0, 23): seq(n!*coeff(a, x, n), n=0..22); # Paolo P. Lava, Mar 27 2019
|
|
MATHEMATICA
|
nmax = 22; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
|
|
CROSSREFS
|
Cf. A001227, A028342, A028343, A054844, A156616, A168243, A206303, A294356.
Sequence in context: A272820 A152393 A305199 * A004984 A326928 A277381
Adjacent sequences: A295789 A295790 A295791 * A295793 A295794 A295795
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Ilya Gutkovskiy, Nov 27 2017
|
|
STATUS
|
approved
|
|
|
|