OFFSET
1,1
COMMENTS
a(n) = twice the number of odd divisors of n. That is, if d is the divisor function and q is the exponent of the largest power of 2 dividing n, then the a(n) equals 2*d(n)/(q+1). - Andrew Niedermaier, Jul 20 2003
Moebius transform is period 2 sequence [2, 0, ...]. - Michael Somos, Sep 20 2005
a(n) is twice the number of partitions of n into consecutive parts. - Omar E. Pol, Nov 28 2020
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
FORMULA
a(n) = 2*A001227(n). - Andrew Niedermaier, Jul 20 2003
G.f.: Sum_{k>0} 2x^k/(1-x^(2k)) = Sum_{k>0} 2x^(2k-1)/(1-x^(2k-1)). - Michael Somos, Sep 20 2005
EXAMPLE
a(3) = 4 because 3 = (-2)+(-1)+0+1+2+3 or 0+1+2 or 1+2 or 3; a(13) = 4 because 13 = (-12)+...+13 or (-5)+...+7 or 6+7 or 13.
From Omar E. Pol, Nov 28 2020: (Start)
Illustration of initial terms:
Diagram
n a(n) _ _
1 2 _|1 1|_
2 2 _|1 _ _ 1|_
3 4 _|1 |1 1| 1|_
4 2 _|1 _| |_ 1|_
5 4 _|1 |1 _ _ 1| 1|_
6 4 _|1 _| |1 1| |_ 1|_
7 4 _|1 |1 | | 1| 1|_
8 2 _|1 _| _| |_ |_ 1|_
9 6 _|1 |1 |1 _ _ 1| 1| 1|_
10 4 _|1 _| | |1 1| | |_ 1|_
11 4 _|1 |1 _| | | |_ 1| 1|_
12 4 _|1 _| |1 | | 1| |_ 1|_
13 4 _|1 |1 | _| |_ | 1| 1|_
14 4 _|1 _| _| |1 _ _ 1| |_ |_ 1|_
15 8 _|1 |1 |1 | |1 1| | 1| 1| 1|_
16 2 |1 | | | | | | | | 1|
...
a(n) is the number of horizontal toothpicks in the n-th level of the diagram. (End)
PROG
(PARI) a(n)=2*sumdiv(n, d, d%2)
(PARI) A054844(n) = (2*numdiv(n>>valuation(n, 2))); \\ Antti Karttunen, Sep 27 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Apr 13 2000
EXTENSIONS
Corrected and extended by Michael Somos, Apr 26 2000
STATUS
approved