login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054844
Number of ways to write n as the sum of any number of consecutive integers (including the trivial one-term sum n = n).
14
2, 2, 4, 2, 4, 4, 4, 2, 6, 4, 4, 4, 4, 4, 8, 2, 4, 6, 4, 4, 8, 4, 4, 4, 6, 4, 8, 4, 4, 8, 4, 2, 8, 4, 8, 6, 4, 4, 8, 4, 4, 8, 4, 4, 12, 4, 4, 4, 6, 6, 8, 4, 4, 8, 8, 4, 8, 4, 4, 8, 4, 4, 12, 2, 8, 8, 4, 4, 8, 8, 4, 6, 4, 4, 12, 4, 8, 8, 4, 4, 10, 4, 4, 8, 8, 4, 8, 4, 4, 12, 8, 4, 8, 4, 8, 4, 4, 6, 12, 6
OFFSET
1,1
COMMENTS
a(n) = twice the number of odd divisors of n. That is, if d is the divisor function and q is the exponent of the largest power of 2 dividing n, then the a(n) equals 2*d(n)/(q+1). - Andrew Niedermaier, Jul 20 2003
Moebius transform is period 2 sequence [2, 0, ...]. - Michael Somos, Sep 20 2005
a(n) is twice the number of partitions of n into consecutive parts. - Omar E. Pol, Nov 28 2020
LINKS
FORMULA
a(n) = 2*A001227(n). - Andrew Niedermaier, Jul 20 2003
G.f.: Sum_{k>0} 2x^k/(1-x^(2k)) = Sum_{k>0} 2x^(2k-1)/(1-x^(2k-1)). - Michael Somos, Sep 20 2005
a(n) = A010054(n) + A335616(n). - Omar E. Pol, Nov 28 2020
EXAMPLE
a(3) = 4 because 3 = (-2)+(-1)+0+1+2+3 or 0+1+2 or 1+2 or 3; a(13) = 4 because 13 = (-12)+...+13 or (-5)+...+7 or 6+7 or 13.
From Omar E. Pol, Nov 28 2020: (Start)
Illustration of initial terms:
Diagram
n a(n) _ _
1 2 _|1 1|_
2 2 _|1 _ _ 1|_
3 4 _|1 |1 1| 1|_
4 2 _|1 _| |_ 1|_
5 4 _|1 |1 _ _ 1| 1|_
6 4 _|1 _| |1 1| |_ 1|_
7 4 _|1 |1 | | 1| 1|_
8 2 _|1 _| _| |_ |_ 1|_
9 6 _|1 |1 |1 _ _ 1| 1| 1|_
10 4 _|1 _| | |1 1| | |_ 1|_
11 4 _|1 |1 _| | | |_ 1| 1|_
12 4 _|1 _| |1 | | 1| |_ 1|_
13 4 _|1 |1 | _| |_ | 1| 1|_
14 4 _|1 _| _| |1 _ _ 1| |_ |_ 1|_
15 8 _|1 |1 |1 | |1 1| | 1| 1| 1|_
16 2 |1 | | | | | | | | 1|
...
a(n) is the number of horizontal toothpicks in the n-th level of the diagram. (End)
PROG
(PARI) a(n)=2*sumdiv(n, d, d%2)
(PARI) A054844(n) = (2*numdiv(n>>valuation(n, 2))); \\ Antti Karttunen, Sep 27 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Apr 13 2000
EXTENSIONS
Corrected and extended by Michael Somos, Apr 26 2000
STATUS
approved