login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054842
If n = a + 10 * b + 100 * c + 1000 * d + ... then a(n) = (2^a) * (3^b) * (5^c) * (7^d) * ...
16
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 9, 18, 36, 72, 144, 288, 576, 1152, 2304, 4608, 27, 54, 108, 216, 432, 864, 1728, 3456, 6912, 13824, 81, 162, 324, 648, 1296, 2592, 5184, 10368, 20736, 41472, 243, 486, 972, 1944
OFFSET
0,2
COMMENTS
a((10^k-1)/9) = Primorial(k)= A061509((10^k-1)/9). This is a rearrangement of whole numbers. a(m) = a(n) iff m = n. (Unlike A061509, in which a(n) = a(n*10^k).) - Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 14 2003
Part of the previous comment is incorrect: as a set, this sequence consists of numbers n such that the largest exponent appearing in the prime factorization of n is 9. So this cannot be a rearrangement (or permutation) of the natural numbers. - Tom Edgar, Oct 20 2015
LINKS
FORMULA
a(n) = f(n, 1, 1) with f(x, y, z) = if x > 0 then f(floor(x/10), y*prime(z)^(x mod 10), z+1) else y. - Reinhard Zumkeller, Mar 13 2010
EXAMPLE
a(15)=96 because 3^1 * 2^5 = 3*32 = 96.
MATHEMATICA
A054842[n_] := Times @@ (Prime[Range[Length[#], 1, -1]]^#) & [IntegerDigits[n]];
Array[A054842, 100, 0] (* Paolo Xausa, Nov 25 2024 *)
PROG
(Haskell)
a054842 = f a000040_list 1 where
f _ y 0 = y
f (p:ps) y x = f ps (y * p ^ d) x' where (x', d) = divMod x 10
-- Reinhard Zumkeller, Aug 03 2015
(PARI) a(n)= my(d=Vecrev(digits(n))); factorback(primes(#d), d); \\ Ruud H.G. van Tol, Nov 28 2024
CROSSREFS
Cf. analogous sequences for other bases: A019565 (base 2), A101278 (base 3), A101942 (base 4), A101943 (base 5), A276076 (factorial base), A276086 (primorial base).
Sequence in context: A086066 A263327 A085941 * A290389 A101440 A126605
KEYWORD
base,nonn,easy,look
AUTHOR
Henry Bottomley, Apr 11 2000
STATUS
approved