OFFSET
0,2
COMMENTS
a((10^k-1)/9) = Primorial(k)= A061509((10^k-1)/9). This is a rearrangement of whole numbers. a(m) = a(n) iff m = n. (Unlike A061509, in which a(n) = a(n*10^k).) - Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 14 2003
Part of the previous comment is incorrect: as a set, this sequence consists of numbers n such that the largest exponent appearing in the prime factorization of n is 9. So this cannot be a rearrangement (or permutation) of the natural numbers. - Tom Edgar, Oct 20 2015
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..9999
FORMULA
a(n) = f(n, 1, 1) with f(x, y, z) = if x > 0 then f(floor(x/10), y*prime(z)^(x mod 10), z+1) else y. - Reinhard Zumkeller, Mar 13 2010
EXAMPLE
a(15)=96 because 3^1 * 2^5 = 3*32 = 96.
MATHEMATICA
A054842[n_] := Times @@ (Prime[Range[Length[#], 1, -1]]^#) & [IntegerDigits[n]];
Array[A054842, 100, 0] (* Paolo Xausa, Nov 25 2024 *)
PROG
(Haskell)
a054842 = f a000040_list 1 where
f _ y 0 = y
f (p:ps) y x = f ps (y * p ^ d) x' where (x', d) = divMod x 10
-- Reinhard Zumkeller, Aug 03 2015
(PARI) a(n)= my(d=Vecrev(digits(n))); factorback(primes(#d), d); \\ Ruud H.G. van Tol, Nov 28 2024
CROSSREFS
KEYWORD
AUTHOR
Henry Bottomley, Apr 11 2000
STATUS
approved