

A054842


If n = a + 10 * b + 100 * c + 1000 * d + ... then a(n) = (2^a) * (3^b) * (5^c) * (7^d) * ...


14



1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 9, 18, 36, 72, 144, 288, 576, 1152, 2304, 4608, 27, 54, 108, 216, 432, 864, 1728, 3456, 6912, 13824, 81, 162, 324, 648, 1296, 2592, 5184, 10368, 20736, 41472, 243, 486, 972
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

a((10^k1)/9) = Primorial(k)= A061509((10^k1)/9). This is a rearrangement of whole numbers. a(m) = a(n) iff m = n. (Unlike A061509, in which a(n) = a(n*10^k)).)  Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 14 2003
Part of the previous comment is incorrect: as a set, this sequence consists of numbers n such that the largest exponent appearing in the prime factorization of n is 9. So this cannot be a rearrangement (or permutation) of the natural numbers.  Tom Edgar, Oct 20 2015


LINKS

R. Zumkeller, Table of n, a(n) for n = 0..9999


FORMULA

a(n) = f(n, 1, 1) with f(x, y, z) = if x > 0 then f(floor(x/10), y*prime(z)^(x mod 10), z+1) else y.  Reinhard Zumkeller, Mar 13 2010


EXAMPLE

a(15)=96 because 3^1 * 2^5 = 3*32 = 96.


PROG

(Haskell)
a054842 = f a000040_list 1 where
f _ y 0 = y
f (p:ps) y x = f ps (y * p ^ d) x' where (x', d) = divMod x 10
 Reinhard Zumkeller, Aug 03 2015


CROSSREFS

Cf. A054841, A085840.
Cf. A019565, A101278.  Reinhard Zumkeller, Mar 13 2010
Sequence in context: A086066 A263327 A085941 * A290389 A101440 A126605
Adjacent sequences: A054839 A054840 A054841 * A054843 A054844 A054845


KEYWORD

base,nonn,look


AUTHOR

Henry Bottomley, Apr 11 2000


STATUS

approved



