

A263327


A permutation of {0, 1, ..., 1023} corresponding to lexicographical ordering A262557 of numbers with decreasing digits A009995.


7



0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 3, 5, 6, 9, 10, 12, 17, 18, 20, 24, 33, 34, 36, 40, 48, 65, 66, 68, 72, 80, 96, 129, 130, 132, 136, 144, 160, 192, 257, 258, 260, 264, 272, 288, 320, 384, 513, 514, 516, 520, 528, 544, 576, 640, 768, 7, 11, 13, 14
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

For n = 1..1023, A262557(a(n)) = A009995(n).
Cycle type = (1^12, 3^2, 10^2, 74, 912), i.e., this permutation has 12 fixed points, two 3cycles and two 10cycles, and two more cycles of length 74 and 912. See A263355 for the list of these cycles, A263383 for the length of the nth cycle (ordered by increasing largest element).


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1023


PROG

(Haskell)
a263327 0 = 0
a263327 n = head [x  x < [1..1023], a262557 x == a009995' n]
(PARI) A263327=vecsort(A262557, , 1) \\ Does not include a(0)=0.  M. F. Hasler, Dec 11 2019


CROSSREFS

Cf. A009995, A262557, A263328 (inverse), A263329 (fixed points), A263383, A263355 (cycles).
Sequence in context: A061509 A189398 A086066 * A085941 A054842 A290389
Adjacent sequences: A263324 A263325 A263326 * A263328 A263329 A263330


KEYWORD

nonn,fini,full


AUTHOR

Reinhard Zumkeller, Oct 15 2015


EXTENSIONS

Edited by M. F. Hasler, Dec 11 2019


STATUS

approved



