OFFSET
1,3
COMMENTS
Original name: "Countdown sequences, allowing gaps."
Only digits 0 through 9 are used. The last term is 9876543210.
Equals A009995, sorted lexicographically. - Reinhard Zumkeller, Oct 14 2015
There are 2^k terms starting with digit k >= 0, they start at index 2^k. The countdown sequences, i.e., digits of the n-th term, are given in rows of A272011. - M. F. Hasler, Dec 11 2019
REFERENCES
Donald S. McDonald, Email message to N. J. A. Sloane, Oct 14 2015.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..1023
FORMULA
MATHEMATICA
A262557[n_] := FromDigits[BitLength[n] - Flatten[Position[IntegerDigits[n, 2], 1]]]; Array[A262557, 100] (* or *)
A262557full = Rest[Map[FromDigits, LexicographicSort[Subsets[Range[9, 0, -1]]]]] (* Paolo Xausa, Feb 13 2024 *)
PROG
(Haskell)
a262557 n = a262557_list !! (n-1)
a262557_list = 0 : f [[0]] where
f xss = if x < 9 then (map (read . concatMap show) zss) ++ f zss else []
where zss = (map (z :) $ map tail xss) ++ (map (z :) xss)
z = x + 1; x = head $ head xss
-- Reinhard Zumkeller, Oct 14 2015
apply( A262557(n)=fromdigits(Vecrev(vecextract([0..exponent(n+!n)], n))), [1..99])
# A262557=concat(apply(x(i)=concat(vector(i%10+1, j, if(j>1, x(i*10+j-2), i))), [0..9])) \\ M. F. Hasler, Dec 11 2019
(Python)
from itertools import combinations
afull = list(map(int, sorted("".join(c) for i in range(1, 11) for c in combinations("9876543210", i)))) # Michael S. Branicky, Feb 13 2024
CROSSREFS
KEYWORD
nonn,base,fini,full
AUTHOR
N. J. A. Sloane, Oct 14 2015
EXTENSIONS
New name from M. F. Hasler, Dec 11 2019
STATUS
approved