login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263330
Number of (n+2)X(1+2) 0..2 arrays with each row and column divisible by 11, read as a base-3 number with top and left being the most significant digits.
1
1, 1, 3, 9, 23, 51, 133, 399, 1321, 4129, 12457, 38059, 114177, 349017, 1056893, 3188001, 9592717, 28778151, 86390521, 259279771, 778196971, 2334819901, 7004459703, 21010336329, 63026931713, 189077563341, 567218511883
OFFSET
1,3
COMMENTS
Column 1 of A263333.
FORMULA
Empirical: a(n) = 3*a(n-1) +16*a(n-5) -48*a(n-6) -505*a(n-10) +1515*a(n-11) -5105*a(n-15) +15315*a(n-16) -10114*a(n-20) +30342*a(n-21) +15709*a(n-25) -47127*a(n-26).
Empirical formula confirmed: see link. - Robert Israel, Jun 26 2019
EXAMPLE
Some solutions for n=4
..1..0..2....0..0..0....2..1..1....1..0..2....2..1..1....1..0..2....0..0..0
..0..0..0....2..1..1....0..0..0....1..0..2....2..1..1....1..0..2....0..0..0
..0..0..0....2..1..1....0..0..0....1..0..2....2..1..1....1..0..2....0..0..0
..1..0..2....2..1..1....2..1..1....0..0..0....2..1..1....1..0..2....0..0..0
..0..0..0....2..1..1....0..0..0....0..0..0....2..1..1....1..0..2....0..0..0
..1..0..2....2..1..1....2..1..1....1..0..2....0..0..0....0..0..0....0..0..0
MAPLE
States:= [seq(seq(seq([x, y, z], z=0..10), y=0..10), x=0..10)]:
T:= Matrix(1331, 1331, storage=sparse):
for i from 1 to 1331 do
for y in [[0, 0, 0], [1, 0, 2], [2, 1, 1]] do
z:= 3*States[i]+y mod 11;
j:= 121*z[1]+11*z[2]+z[3] + 1;
T[i, j]:= 1;
od od:
U[0]:= Vector([1, 0$1330]):
for j from 1 to 40 do U[j]:= T . U[j-1] od:
seq(U[n+2][1], n=1..38); # Robert Israel, Jun 26 2019
CROSSREFS
Cf. A263333.
Sequence in context: A227259 A064551 A005783 * A146440 A244331 A183155
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 15 2015
STATUS
approved