OFFSET
1,3
COMMENTS
Column 1 of A263333.
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..210
Robert Israel, Maple-assisted proof of empirical formula
FORMULA
Empirical: a(n) = 3*a(n-1) +16*a(n-5) -48*a(n-6) -505*a(n-10) +1515*a(n-11) -5105*a(n-15) +15315*a(n-16) -10114*a(n-20) +30342*a(n-21) +15709*a(n-25) -47127*a(n-26).
Empirical formula confirmed: see link. - Robert Israel, Jun 26 2019
EXAMPLE
Some solutions for n=4
..1..0..2....0..0..0....2..1..1....1..0..2....2..1..1....1..0..2....0..0..0
..0..0..0....2..1..1....0..0..0....1..0..2....2..1..1....1..0..2....0..0..0
..0..0..0....2..1..1....0..0..0....1..0..2....2..1..1....1..0..2....0..0..0
..1..0..2....2..1..1....2..1..1....0..0..0....2..1..1....1..0..2....0..0..0
..0..0..0....2..1..1....0..0..0....0..0..0....2..1..1....1..0..2....0..0..0
..1..0..2....2..1..1....2..1..1....1..0..2....0..0..0....0..0..0....0..0..0
MAPLE
States:= [seq(seq(seq([x, y, z], z=0..10), y=0..10), x=0..10)]:
T:= Matrix(1331, 1331, storage=sparse):
for i from 1 to 1331 do
for y in [[0, 0, 0], [1, 0, 2], [2, 1, 1]] do
z:= 3*States[i]+y mod 11;
j:= 121*z[1]+11*z[2]+z[3] + 1;
T[i, j]:= 1;
od od:
U[0]:= Vector([1, 0$1330]):
for j from 1 to 40 do U[j]:= T . U[j-1] od:
seq(U[n+2][1], n=1..38); # Robert Israel, Jun 26 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 15 2015
STATUS
approved