login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295794
Expansion of e.g.f. Product_{k>=1} exp(x^k/(1 + x^k)).
3
1, 1, 1, 13, 25, 241, 2761, 14701, 153553, 1903105, 27877681, 263555821, 4788201001, 65083782193, 1040877257785, 24098794612621, 373918687272481, 7393663746307201, 164894196647876833, 3504497611085823565, 81863829346282866361, 2257321249626793901041, 49755091945025205954601
OFFSET
0,4
LINKS
FORMULA
E.g.f.: exp(Sum_{k>=1} A048272(k)*x^k).
E.g.f.: exp(x*f'(x)), where f(x) = log(Product_{k>=1} (1 + x^k)^(1/k)).
a(n) ~ exp(2*sqrt(n*log(2)) - 1/4 - n) * n^(n - 1/4) * log(2)^(1/4) / sqrt(2). - Vaclav Kotesovec, Sep 07 2018
MAPLE
a:=series(mul(exp(x^k/(1+x^k)), k=1..100), x=0, 23): seq(n!*coeff(a, x, n), n=0..22); # Paolo P. Lava, Mar 27 2019
MATHEMATICA
nmax = 22; CoefficientList[Series[Product[Exp[x^k/(1 + x^k)], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[Exp[x D[Log[Product[(1 + x^k)^(1/k), {k, 1, nmax}]], x]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, (n - 1)! Sum[-k Sum[(-1)^d, {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 22}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 27 2017
STATUS
approved