login
A294363
E.g.f.: exp(Sum_{n>=1} d(n) * x^n), where d(n) is the number of divisors of n.
12
1, 1, 5, 25, 193, 1481, 16021, 167665, 2220065, 30004273, 468585541, 7560838121, 138355144225, 2589359765305, 53501800316693, 1146089983207681, 26457132132638401, 632544682981967585, 16171678558995779845, 426926324177655018553, 11938570457328874969601
OFFSET
0,3
COMMENTS
From Peter Bala, Nov 13 2017: (Start)
The terms of the sequence appear to be of the form 4*m + 1.
It appears that the sequence taken modulo 10 is periodic with period 5. More generally, we conjecture that for k = 2,3,4,... the sequence a(n+k) - a(n) is divisible by k: if true, then for each k the sequence a(n) taken modulo k would be periodic with the exact period dividing k. (End)
From Peter Bala, Mar 28 2022: (Start)
The above conjectures are true. See the Bala link.
a(5*n+2) == 0 (mod 5); a(5*n+3) == 0 (mod 5); a(13*n+9) == 0 (mod 13). (End)
FORMULA
a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k*A000005(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: Product_{k>=1} exp(x^k/(1 - x^k)). - Ilya Gutkovskiy, Nov 27 2017
Conjecture: log(a(n)/n!) ~ sqrt(2*n*log(n)). - Vaclav Kotesovec, Sep 07 2018
MATHEMATICA
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[0, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 05 2018 *)
a[n_] := a[n] = If[n == 0, 1, Sum[k*DivisorSigma[0, k]*a[n-k], {k, 1, n}]/n]; Table[n!*a[n], {n, 0, 20}] (* Vaclav Kotesovec, Sep 06 2018 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, numdiv(k)*x^k))))
CROSSREFS
E.g.f.: exp(Sum_{n>=1} sigma_k(n) * x^n): this sequence (k=0), A294361 (k=1), A294362 (k=2).
Sequence in context: A096684 A265184 A096245 * A294213 A330198 A346269
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Oct 29 2017
STATUS
approved