login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272820
G.f. A(x) satisfies: A( A(x)^2 - 2*A(x)^3 ) = x*A(x).
1
1, 2, 6, 28, 150, 848, 4988, 30320, 189030, 1201792, 7761296, 50774280, 335776204, 2241022944, 15075584864, 102113820256, 695842808070, 4767068036992, 32813466593552, 226829615262744, 1574027068685944, 10960566883613504, 76564394477117688, 536383955787886208, 3767701071640753708, 26530029714589074464, 187231524430927518240
OFFSET
1,2
LINKS
FORMULA
G.f. A(x) satisfies: A( A(x^2 - 2*x^3) / x ) = x.
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 6*x^3 + 28*x^4 + 150*x^5 + 848*x^6 + 4988*x^7 + 30320*x^8 + 189030*x^9 + 1201792*x^10 +...
where A( A(x)^2 - 2*A(x)^3 ) = x*A(x).
RELATED SERIES.
A(x)^2 = x^2 + 4*x^3 + 16*x^4 + 80*x^5 + 448*x^6 + 2632*x^7 + 15952*x^8 + 99168*x^9 + 629184*x^10 + 4057272*x^11 + 26511544*x^12 +...
A(x)^3 = x^3 + 6*x^4 + 30*x^5 + 164*x^6 + 966*x^7 + 5904*x^8 + 36924*x^9 + 235248*x^10 + 1522086*x^11 + 9974080*x^12 + 66055800*x^13 +...
A(x)^2 - 2*A(x)^3 = x^2 + 2*x^3 + 4*x^4 + 20*x^5 + 120*x^6 + 700*x^7 + 4144*x^8 + 25320*x^9 + 158688*x^10 + 1013100*x^11 + 6563384*x^12 +...
A(x^2 - 2*x^3) = x^2 - 2*x^3 + 2*x^4 - 8*x^5 + 14*x^6 - 36*x^7 + 100*x^8 - 272*x^9 + 822*x^10 - 2396*x^11 + 7296*x^12 - 22176*x^13 + 67868*x^14 +...
Let B(x) be the series reversion of g.f. A(x), so that A(B(x)) = x, then
B(x) = x - 2*x^2 + 2*x^3 - 8*x^4 + 14*x^5 - 36*x^6 + 100*x^7 - 272*x^8 + 822*x^9 - 2396*x^10 + 7296*x^11 - 22176*x^12 + 67868*x^13 +...
where B(x) = A(x^2 - 2*x^3)/x,
also, B( x*B(x) ) = x^2 - 2*x^3.
PROG
(PARI) {a(n) = my(A=[1], F); for(i=1, n, A = concat(A, 0); F = x*Ser(A); A[#A] = -Vec(subst(F, x, F^2 - 2*F^3))[#A]); A[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A228842 A218941 A303829 * A152393 A305199 A295792
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 12 2016
STATUS
approved