login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272823
G.f. satisfies: A(x) = 1 + 4*x*AGM(A(x), A(x)^3).
6
1, 4, 32, 336, 4032, 52336, 715392, 10144192, 147836416, 2200709040, 33319564288, 511496462656, 7942988228608, 124551530359360, 1969386732874752, 31364967043386112, 502686338657607680, 8101474649157519536, 131212844750426749696, 2134554132316280052288, 34862936239396076532736, 571454628433830080180288, 9397626191659208856570880, 155006334509119865698297600, 2563700952357088703495372800
OFFSET
0,2
COMMENTS
Here AGM(x,y) = AGM((x+y)/2, sqrt(x*y)) denotes the arithmetic-geometric mean.
LINKS
FORMULA
G.f. satisfies:
(1) A(x) = 1 + 4*x*AGM(A(x)^2, (A(x) + A(x)^3)/2).
(2) A(x) = 1 + 4*Series_Reversion( x / AGM(1+4*x, (1+4*x)^3) ).
a(n) ~ c * d^n / n^(3/2), where d = 17.6088646774568498919315031912184045773663297219819943809841685080399155... and c = 0.3922200012562096239034743054558268956365939170567699740621520897631... - Vaclav Kotesovec, Nov 15 2023
EXAMPLE
G.f.: A(x) = 1 + 4*x + 32*x^2 + 336*x^3 + 4032*x^4 + 52336*x^5 + 715392*x^6 + 10144192*x^7 + 147836416*x^8 + 2200709040*x^9 + 33319564288*x^10 +...
where A(x) = 1 + 4*x*AGM(A(x), A(x)^3).
RELATED SERIES.
A(x)^2 = 1 + 8*x + 80*x^2 + 928*x^3 + 11776*x^4 + 158432*x^5 + 2220416*x^6 + 32070528*x^7 + 474038272*x^8 + 7136118624*x^9 + 109031206528*x^10 +...
A(x)^3 = 1 + 12*x + 144*x^2 + 1840*x^3 + 24768*x^4 + 346704*x^5 + 4999424*x^6 + 73774656*x^7 + 1108876800*x^8 + 16918514448*x^9 + 261355433856*x^10 +...
(A(x) + A(x)^3)/2 = 1 + 8*x + 88*x^2 + 1088*x^3 + 14400*x^4 + 199520*x^5 + 2857408*x^6 + 41959424*x^7 + 628356608*x^8 + 9559611744*x^9 + 147337499072*x^10 +...
where A(x) = 1 + 4*x*AGM(A(x)^2, (A(x) + A(x)^3)/2).
AGM(1+4*x, (1+4*x)^3)) = 1 + 8*x + 20*x^2 + 16*x^3 - 4*x^4 + 16*x^6 - 64*x^7 + 172*x^8 - 352*x^9 + 560*x^10 - 832*x^11 + 2512*x^12 - 13568*x^13 + 65984*x^14 +...
where A(x) = 1 + 4*Series_Reversion( x / AGM(1+4*x, (1+4*x)^3)) ).
MATHEMATICA
(* Calculation of constants {d, c}: *) {1/r, s*(s - 1)*Sqrt[(1 + s)*(1 + s^2) / (2*Pi*(1 + 2*s + 2*s^2 + 2*s^3 - 7*s^4 + 4*s^5))]} /. FindRoot[{2*Pi*r*s^3 / EllipticK[1 - 1/s^4] == s - 1, Pi*r*(1 + s + s^2 + s^3 - 2*s^4) == (1 - s)*s * EllipticE[1 - 1/s^4]}, {r, 1/18}, {s, 3/2}, WorkingPrecision -> 80] (* Vaclav Kotesovec, Nov 15 2023 *)
PROG
(PARI) /* From definition: A(x) = 1 + 4*x*AGM(A(x), A(x)^3) */
{a(n)=local(A=1+4*x + x*O(x^n)); for(i=1, n, A = 1 + 4*x*agm(A, A^3)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* From formula: A(x) = 1 + 4*x*AGM(A(x)^2, (A(x) + A(x)^3)/2) */
{a(n)=local(A=1+4*x + x*O(x^n)); for(i=1, n, A = 1 + 4*x*agm(A^2, (A + A^3)/2)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* From A(x) = 1 + 4*Series_Reversion(x/AGM(1+4*x, (1+4*x)^3)) */
{a(n) = my(A=1); A = 1 + 4*serreverse(x/agm(1+4*x, (1+4*x)^3 +x*O(x^n))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A291342 A099912 A362676 * A371655 A002005 A123309
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 07 2016
STATUS
approved