login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272821
G.f. A(x) satisfies: A( x*A(x) - 2*x*A(x)^2 + x*A(x)^3 ) = x^2.
2
1, 2, 5, 22, 104, 508, 2581, 13590, 73255, 402096, 2240803, 12645756, 72120577, 415017628, 2406756231, 14051487550, 82524268241, 487209739242, 2889872479365, 17213187356000, 102916691619082, 617446202168776, 3715938753908449, 22427371853933596, 135714772335246022, 823237636321437554, 5004875492077075585, 30490222425814170940
OFFSET
1,2
LINKS
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 5*x^3 + 22*x^4 + 104*x^5 + 508*x^6 + 2581*x^7 + 13590*x^8 + 73255*x^9 + 402096*x^10 + 2240803*x^11 + 12645756*x^12 +...
where A( x*A(x)*(1 - A(x))^2 ) = x^2.
RELATED SERIES.
A(x)^2 = x^2 + 4*x^3 + 14*x^4 + 64*x^5 + 321*x^6 + 1652*x^7 + 8718*x^8 + 47160*x^9 + 259848*x^10 + 1452340*x^11 + 8215412*x^12 +...
A(x)^3 = x^3 + 6*x^4 + 27*x^5 + 134*x^6 + 711*x^7 + 3846*x^8 + 21104*x^9 + 117600*x^10 + 663747*x^11 + 3785068*x^12 + 21775758*x^13 +...
A(x)^4 = x^4 + 8*x^5 + 44*x^6 + 240*x^7 + 1350*x^8 + 7664*x^9 + 43736*x^10 + 251408*x^11 + 1455577*x^12 + 8480432*x^13 + 49687828*x^14 +...
A(x) - 2*A(x)^2 + A(x)^4 = x - 2*x^3 + 3*x^5 - 12*x^7 + 39*x^9 - 130*x^11 + 495*x^13 - 1932*x^15 + 7818*x^17 +...
Let B(x) be the series reversion of g.f. A(x), so that A(B(x)) = x, then
B(x) = x - 2*x^2 + 3*x^3 - 12*x^4 + 39*x^5 - 130*x^6 + 495*x^7 - 1932*x^8 + 7818*x^9 - 32496*x^10 + 137158*x^11 - 587476*x^12 + 2544253*x^13 - 11117046*x^14 + 48960141*x^15 +...
where B(x^2) = x*A(x)*(1 - A(x))^2,
also, B(B(x)^2) = x*(1-x)^2 * B(x).
The square-root of x*A(x) is an integer series:
sqrt( x*A(x) ) = x + x^2 + 2*x^3 + 9*x^4 + 41*x^5 + 195*x^6 + 973*x^7 + 5063*x^8 + 27023*x^9 + 147147*x^10 + 814736*x^11 + 4573323*x^12 + 25964578*x^13 + 148836155*x^14 + 860244693*x^15 +...+ A292078(n)*x^n +...
Given g.f. A(x), the g.f. of A292078 equals G(x) such that
(1) G(x)^2 = A(x^2),
(2) G( x*G(x) - x*G(x)^3 ) = x^2.
PROG
(PARI) {a(n) = my(A=[1, 2]); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -Vec( subst(F, x, x*F*(1-F)^2 ) )[#A] ); A[n]}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
Cf. A292078.
Sequence in context: A056840 A321608 A241345 * A278439 A126797 A101206
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 09 2016
STATUS
approved