login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292078
G.f. A(x) satisfies: A( x*A(x) - x*A(x)^3 ) = x^2.
2
1, 1, 2, 9, 41, 195, 973, 5063, 27023, 147147, 814736, 4573323, 25964578, 148836155, 860244693, 5007774327, 29335134676, 172795403961, 1022846515313, 6081326577289, 36299846585819, 217453376517864, 1306896005620248, 7877827287152760, 47616211198632181, 288530341065667223, 1752397627719108436, 10666056677548533447, 65048712917677483325, 397445444941987972488, 2432577591939242911470
OFFSET
1,3
COMMENTS
Self-convolution forms A272821.
LINKS
EXAMPLE
G.f.: A(x) = x + x^3 + 2*x^5 + 9*x^7 + 41*x^9 + 195*x^11 + 973*x^13 + 5063*x^15 + 27023*x^17 + 147147*x^19 + 814736*x^21 + 4573323*x^23 + 25964578*x^25 + 148836155*x^27 + 860244693*x^29 + 5007774327*x^31 + 29335134676*x^33 + 172795403961*x^35 +..
such that A( x*A(x) - x*A(x)^3 ) = x^2.
RELATED SERIES.
The coefficients of A(x)^2 forms A272821:
A(x)^2 = x^2 + 2*x^4 + 5*x^6 + 22*x^8 + 104*x^10 + 508*x^12 + 2581*x^14 + 13590*x^16 + 73255*x^18 + 402096*x^20 + 2240803*x^22 + 12645756*x^24 + 72120577*x^26 + 415017628*x^28 + 2406756231*x^30 +...+ A272821(n)*x^(2*n) +...
The cube of the g.f. yields
A(x)^3 = x^3 + 3*x^5 + 9*x^7 + 40*x^9 + 195*x^11 + 978*x^13 + 5063*x^15 + 27009*x^17 + 147147*x^19 + 814782*x^21 + 4573323*x^23 + 25964403*x^25 + 148836155*x^27 + 860245368*x^29 + 5007774327*x^31 + 29335131945*x^33 + 172795403961*x^35 +...
where
A(x) - A(x)^3 = x - x^5 + x^9 - 5*x^13 + 14*x^17 - 46*x^21 + 175*x^25 - 675*x^29 + 2731*x^33 - 11323*x^37 + 47642*x^41 - 203618*x^45 +...
Define Ai(x) by Ai(A(x)) = x, then:
Ai(x) = x - x^3 + x^5 - 5*x^7 + 14*x^9 - 46*x^11 + 175*x^13 - 675*x^15 + 2731*x^17 - 11323*x^19 + 47642*x^21 - 203618*x^23 + 879655*x^25 - 3834767*x^27 + 16853975*x^29 - 74585691*x^31 + 332094891*x^33 - 1486751803*x^35 + 6688440045*x^37 +...
so that A(x) - A(x)^3 = Ai(x^2)/x.
Also, Ai(x) = Ai( Ai(x)^2 ) / (x - x^3).
PROG
(PARI) {a(n) = my(A=[1, 0, 1]); for(i=1, n, A=concat(A, [0, 0]); F=x*Ser(A); A[#A] = -Vec( subst(F, x, x*F - x*F^3 ) )[#A] ); A[2*n-1]}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A128752 A074611 A362381 * A270766 A181375 A152052
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 12 2017
STATUS
approved