|
|
A128752
|
|
Number of ascents of length at least 2 in all skew Dyck paths of semilength n.
|
|
3
|
|
|
0, 0, 2, 9, 41, 189, 880, 4131, 19522, 92763, 442798, 2121795, 10200477, 49176639, 237661176, 1151032005, 5585185425, 27146751885, 132145210270, 644128990155, 3143590707235, 15358979381175, 75117256339240, 367723284610905
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of a path is defined to be the number of its steps. An ascent in a path is a maximal sequence of consecutive U steps.
|
|
LINKS
|
E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
|
|
FORMULA
|
G.f.: (1/2)(1-2z)sqrt((1-z)/(1-5z)) - 1/2.
Recurrence: n*(3*n-1)*a(n) = 18*(n-1)*n*a(n-1) - 5*(n-3)*(3*n+2)*a(n-2). - Vaclav Kotesovec, Nov 20 2012
|
|
EXAMPLE
|
a(2)=2 because we have UUDD and UUDL.
|
|
MAPLE
|
G:=(1/2)*(1-2*z)*sqrt((1-z)/(1-5*z))-1/2: Gser:=series(G, z=0, 30): seq(coeff(Gser, z, n), n=0..27);
|
|
MATHEMATICA
|
CoefficientList[Series[1/2*(1-2*x)*Sqrt[(1-x)/(1-5*x)]-1/2, {x, 0, 20}], x] (* Vaclav Kotesovec, Nov 20 2012 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|