|
|
A362381
|
|
E.g.f. satisfies A(x) = exp(x + x^3/6 * A(x)).
|
|
4
|
|
|
1, 1, 1, 2, 9, 41, 191, 1191, 9353, 77897, 704861, 7352621, 85323921, 1058023825, 14155416003, 206100005931, 3217934262481, 53320102598481, 939087824434009, 17562552535939705, 346668611080774081, 7196193133818592961, 156944931623033340711
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
|
|
FORMULA
|
E.g.f.: exp(x - LambertW(-x^3/6 * exp(x))) = -6 * LambertW(-x^3/6 * exp(x))/x^3.
a(n) = n! * Sum_{k=0..floor(n/3)} (1/6)^k * (k+1)^(n-2*k-1) / (k! * (n-3*k)!).
|
|
PROG
|
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^3/6*exp(x)))))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|