login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181375
Total number of positive integers below 10^n requiring 2 positive cubes in their representation as sum of cubes.
9
2, 9, 41, 202, 938, 4354, 20330, 94625, 439959, 2045048, 9500746, 44124084, 204883131, 951202028, 4415710979, 20497646229, 95146359635
OFFSET
1,1
COMMENTS
A061439(n) + a(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + A130130(n) = A002283(n).
LINKS
Eric Weisstein's World of Mathematics, Waring's Problem.
MAPLE
iscube:=proc(n) if root(n, 3)=trunc(root(n, 3)) then true; else false; fi; end:
isA003325:=proc(n) local x, y3; if iscube(n) then false; else for x from 1 do y3:=n-x^3; if y3<x^3 then return false; elif iscube(y3) then return true; fi; od; fi; end:
a:=proc(n) local i, k; i:=0; for k from 2 to 10^n-1 do if isA003325(k) then i:=i+1; fi; od: return(i); end:
for n from 1 do print(a(n)); od;
PROG
(PARI) a(n)=my(N=10^n, v=List(), x3); sum(x=1, sqrtnint(N-1, 3), x3=x^3; sum(y=1, min(sqrtnint(N-x3, 3), x), !ispower(x3+y^3, 3) && listput(v, x3+y^3))); #vecsort(v, , 8) \\ Charles R Greathouse IV, Oct 16 2013
CROSSREFS
Cf. A003325.
Sequence in context: A362381 A292078 A270766 * A152052 A192661 A020038
KEYWORD
nonn,more
AUTHOR
Martin Renner, Jan 28 2011
EXTENSIONS
a(6)-a(12) from Lars Blomberg, May 04 2011
a(13)-a(17) from Hiroaki Yamanouchi, Jul 12 2014
STATUS
approved