This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A181374 Let f(n) = sum(j^n*3^j/binomial(2*j,j),j=1..infinity) = r_n*Pi/sqrt(3) + s_n; sequence gives s_n. 3
 3, 18, 156, 1890, 29496, 563094, 12709956, 331109658, 9777612432 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's Second Interesting Series, arXiv:1009.4274 [math-ph], 2010-2011. F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's interesting series, Amer. Math. Monthly, 120 (2013), 116-130. MATHEMATICA f[n_] := Sum[j^n*3^j/Binomial[2*j, j], {j, 1, Infinity}]; a[n_] := FindIntegerNullVector[{Pi/Sqrt[3], 1, N[-f[n], 20]}][[2]]; Table[s = a[n]; Print[s]; s, {n, 0, 8}] (* Jean-François Alcover, Sep 05 2018 *) CROSSREFS Cf. A185672 (r_n), A180875 and A014307 (2^j rather than 3^j). Sequence in context: A107888 A293491 A138274 * A060913 A246523 A246529 Adjacent sequences:  A181371 A181372 A181373 * A181375 A181376 A181377 KEYWORD nonn,more AUTHOR N. J. A. Sloane, Feb 09 2011, following a suggestion from Herb Conn STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 18:53 EDT 2019. Contains 323481 sequences. (Running on oeis4.)