The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185672 Let f(n) = Sum_{j>=1} j^n*3^j/binomial(2*j,j) = r_n*Pi/sqrt(3) + s_n; sequence gives r_n. 2
 4, 20, 172, 2084, 32524, 620900, 14014732, 365100644, 10781360524, 355869575780, 12984066273292, 518879340911204, 22540052170064524, 1057507154836226660, 53291594817628483852, 2870834224548449841764, 164633490033421041392524, 10013579272685278891133540, 643872718978606529940390412 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..200 F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's Interesting Series, arXiv:1009.4274 [math-ph], 2010-2011. F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's interesting series, Amer. Math. Monthly, 120 (2013), 116-130. D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly, 92(7) (1985), 449-457. FORMULA a(n) ~ 2^(3/2) * n^(n+1) / (sqrt(3) * exp(n) * (log(4/3))^(n + 3/2)). - Vaclav Kotesovec, May 15 2020 MATHEMATICA f[n_] := Sum[j^n*3^j/Binomial[2*j, j], {j, 1, Infinity}]; a[n_] := FindIntegerNullVector[{Pi/Sqrt[3], 1, N[-f[n], 20]}][[1]]; Table[r = a[n]; Print[r]; r, {n, 0, 8}] (* Jean-François Alcover, Sep 05 2018 *) Table[Expand[FunctionExpand[FullSimplify[Sum[j^n*3^j/Binomial[2*j, j], {j, 1, Infinity}]]]][[2]] * Sqrt[3]/Pi, {n, 0, 20}] (* Vaclav Kotesovec, May 14 2020 *) S[k_, z_] := Sum[n!*(z/(4 - z))^n* StirlingS2[k + 1, n]*(1/n + Sum[(-1)^p*Pochhammer[1/2, p]/(p + 1)!* Binomial[n - 1, p]*(4/z)^(p + 1)*(Sqrt[z/(4 - z)]*ArcSin[Sqrt[z]/2] - 1/2*Sum[Gamma[l]/Pochhammer[1/2, l]*(z/4)^l, {l, 1, p}]), {p, 0, n - 1}]), {n, 1, k + 2}]; Table[Expand[Simplify[S[j, 3]]][[2]]*Sqrt[3]/Pi, {j, 0, 20}] (* Vaclav Kotesovec, May 15 2020 *) CROSSREFS Cf. A181374 (s_n), A180875 and A014307 (2^j rather than 3^j). Sequence in context: A032333 A357666 A068965 * A210438 A054474 A213144 Adjacent sequences: A185669 A185670 A185671 * A185673 A185674 A185675 KEYWORD nonn AUTHOR N. J. A. Sloane, Feb 09 2011, following a suggestion from Herb Conn EXTENSIONS More terms from Vaclav Kotesovec, May 14 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 11:21 EST 2022. Contains 358700 sequences. (Running on oeis4.)