|
|
A185673
|
|
Least number k having n representations as the sum of the minimal number of biquadrates A002377(k).
|
|
1
|
|
|
1, 259, 518, 777, 3402, 3645, 3726, 7045, 7243, 12683, 16441, 13723, 13792, 21631, 20202, 23002, 24135, 27162, 28870, 28215, 33230, 39629, 36510, 41561, 43241, 29563, 47401, 41310, 47150, 47790, 56749, 43962, 48750, 62681, 65069, 50442
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
This sequence is not monotonically increasing: a(21)=33230 > a(26)=29563.
|
|
LINKS
|
|
|
EXAMPLE
|
a(1) = 1 since 1 = 1^4 (1 way with minimal representation)
a(2) = 259 since 259 = 1^4 + 1^4 + 1^4 + 4^4 = 2^4 + 3^4 + 3^4 + 3^4 (2 ways with minimal representation)
a(3) = 518 since 518 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 (3 ways with minimal representation)
|
|
MATHEMATICA
|
t=Table[r=PowersRepresentations[n, 19, 4]; Sort[Tally[19-Count[#, 0]&/@r]][[1, 2]], {n, 800}]; u=Union[t]; c=Complement[Range[Max[u]], u]; If[c=={}, mx=u[[-1]], mx=c[[1]]-1]; Flatten[Table[Position[t, n, 1, 1], {n, mx}]]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|