login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375945
Expansion of e.g.f. 1 / (1 + 2 * log(1 - x))^(3/2).
4
1, 3, 18, 156, 1758, 24342, 399480, 7577700, 163090500, 3926104860, 104520733560, 3048811591680, 96695722690200, 3312942954681240, 121938065727180480, 4798400761979259120, 201030443703421854480, 8933622147642363338160, 419725992843354254228640
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} A001147(k+1) * |Stirling1(n,k)|.
a(n) ~ n^(n+1) / (exp(n/2) * (exp(1/2) - 1)^(n + 3/2)). - Vaclav Kotesovec, Sep 06 2024
MATHEMATICA
nmax=18; CoefficientList[Series[1 / (1 + 2 * Log[1 - x])^(3/2), {x, 0, nmax}], x]*Range[0, nmax]! (* Stefano Spezia, Sep 03 2024 *)
PROG
(PARI) a001147(n) = prod(k=0, n-1, 2*k+1);
a(n) = sum(k=0, n, a001147(k+1)*abs(stirling(n, k, 1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 03 2024
STATUS
approved