OFFSET
0,5
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..200
EXAMPLE
The a(3) = 1 matrix is:
[0 1 1]
[1 0 1]
[1 1 0]
The a(4) = 3 matrices are:
[0 0 1 1] [0 1 0 1] [0 1 1 0]
[0 0 1 1] [1 0 1 0] [1 0 0 1]
[1 1 0 0] [0 1 0 1] [1 0 0 1]
[1 1 0 0] [1 0 1 0] [0 1 1 0]
PROG
(PARI) G(n)={my(A=x/exp(x*y + O(x*x^n))); exp(y*x^2/2 - x + O(x*x^n)) * sum(k=0, n, (1 + y + O(y*y^n))^binomial(k, 2)*A^k/k!)}
seq(n)={Vec(subst(Pol(serlaplace(G(n))), x, 1))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Feb 08 2024
STATUS
approved