login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of traceless symmetric binary matrices with 2n 1's and all row sums >= 2.
2

%I #13 Feb 09 2024 12:48:57

%S 1,0,0,1,3,18,156,1555,17907,234031,3414375,54984258,968680368,

%T 18532158756,382616109012,8479409847277,200776196593073,

%U 5058600736907013,135130222251100358,3814891312969572209,113492694557655580989,3548800852807887882157,116359373033373284971070

%N Number of traceless symmetric binary matrices with 2n 1's and all row sums >= 2.

%H Andrew Howroyd, <a href="/A370059/b370059.txt">Table of n, a(n) for n = 0..200</a>

%e The a(3) = 1 matrix is:

%e [0 1 1]

%e [1 0 1]

%e [1 1 0]

%e The a(4) = 3 matrices are:

%e [0 0 1 1] [0 1 0 1] [0 1 1 0]

%e [0 0 1 1] [1 0 1 0] [1 0 0 1]

%e [1 1 0 0] [0 1 0 1] [1 0 0 1]

%e [1 1 0 0] [1 0 1 0] [0 1 1 0]

%o (PARI) G(n)={my(A=x/exp(x*y + O(x*x^n))); exp(y*x^2/2 - x + O(x*x^n)) * sum(k=0, n, (1 + y + O(y*y^n))^binomial(k, 2)*A^k/k!)}

%o seq(n)={Vec(subst(Pol(serlaplace(G(n))), x, 1))}

%Y Row sums of A369931.

%Y Cf. A001205 (row sums of matrices exactly 2).

%K nonn

%O 0,5

%A _Andrew Howroyd_, Feb 08 2024