login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A375947
Expansion of e.g.f. 1 / (1 + 4 * log(1 - x))^(3/2).
1
1, 6, 66, 1032, 20856, 516384, 15129600, 511880160, 19637499360, 842285112000, 39939749040960, 2074625404323840, 117151213971202560, 7145371319204666880, 468138620331976343040, 32788234887866638709760, 2444773199922430356833280
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} A000407(k) * |Stirling1(n,k)|.
MATHEMATICA
nmax=16; CoefficientList[Series[1 / (1 + 4 * Log[1-x])^(3/2), {x, 0, nmax}], x]*Range[0, nmax]! (* Stefano Spezia, Sep 03 2024 *)
PROG
(PARI) a000407(n) = (2*n+1)!/n!;
a(n) = sum(k=0, n, a000407(k)*abs(stirling(n, k, 1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 03 2024
STATUS
approved