login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A362379
Convolution triangle of A052547(n).
0
1, 0, 1, 2, 0, 1, 1, 4, 0, 1, 5, 2, 6, 0, 1, 5, 14, 3, 8, 0, 1, 14, 14, 27, 4, 10, 0, 1, 19, 49, 27, 44, 5, 12, 0, 1, 42, 68, 113, 44, 65, 6, 14, 0, 1, 66, 175, 159, 214, 65, 90, 7, 16, 0, 1, 131, 286, 465, 304, 360, 90, 119, 8, 18, 0, 1
OFFSET
0,4
FORMULA
T(n,k) = T(n-1,k) + T(n-1,k-1) + 2*T(n-2,k) - T(n-2,k-1) - T(n-3,k) ; T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = T(2,1) = 0, T(2,0) = 2, T(n,k) = 0 if k<0 or if k>n .
Sum_{k = 0..n} T(n,k)*x^k = A052547(n), A077998(n), A052536(n), A052941(n) for x = 0, 1, 2, 3 respectively.
Sum_{k = 0..n} T(n,k)*2^(n-k) = A139818(n+1) = A001045(n+1)^2.
EXAMPLE
Triangle begins, for n>=0, 0<=k<=n :
1 ;
0, 1 ;
2, 0, 1 ;
1, 4, 0, 1 ;
5, 2, 6, 0, 1 ;
5, 14, 3, 8, 0, 1 ;
14, 14, 27, 4, 10, 0, 1 ;
19, 49, 27, 44, 5, 12, 0, 1 ;
42, 68, 113, 44, 65, 6, 14, 0, 1 ;
...
CROSSREFS
Cf. A052547, A077998 (row sums), A052964 (diagonal sums).
Sequence in context: A221755 A354666 A110298 * A144740 A283272 A292166
KEYWORD
nonn,easy,tabl
AUTHOR
Philippe Deléham, Apr 20 2023
STATUS
approved