login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292166
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 - j^k*x^j).
7
1, 1, -1, 1, -1, -1, 1, -1, -2, 0, 1, -1, -4, -1, 0, 1, -1, -8, -5, -1, 1, 1, -1, -16, -19, -7, 5, 0, 1, -1, -32, -65, -37, 27, 1, 1, 1, -1, -64, -211, -175, 155, 17, 13, 0, 1, -1, -128, -665, -781, 927, 205, 167, 4, 0, 1, -1, -256, -2059, -3367, 5675, 2129, 2089, 110, 0, 0
OFFSET
0,9
LINKS
FORMULA
A(0,k) = 1 and A(n,k) = -(1/n) * Sum_{j=1..n} (Sum_{d|j} d^(1+k*j/d)) * A(n-j,k) for n > 0. - Seiichi Manyama, Nov 02 2017
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
-1, -1, -1, -1, -1, ...
-1, -2, -4, -8, -16, ...
0, -1, -5, -19, -65, ...
0, -1, -7, -37, -175, ...
MATHEMATICA
A[n_, k_] := A[n, k] = If[n == 0, 1, -(1/n)*Sum[Sum[d^(1+k*j/d), {d, Divisors[j]}]*A[n-j, k], {j, 1, n}]];
Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Sep 04 2022 *)
CROSSREFS
Columns k=0..2 give A010815, A022661, A292164.
Rows n=0..2 give A000012, (-1)*A000012, (-1)*A000079.
Main diagonal gives A292167.
Sequence in context: A362379 A144740 A283272 * A282192 A049501 A102564
KEYWORD
sign,look,tabl
AUTHOR
Seiichi Manyama, Sep 10 2017
STATUS
approved