|
|
A292080
|
|
Number of nonequivalent ways to place n non-attacking rooks on an n X n board with no rook on 2 main diagonals up to rotations and reflections of the board.
|
|
2
|
|
|
1, 0, 0, 0, 2, 2, 14, 84, 630, 6096, 55336, 672160, 7409300, 104999520, 1366363752, 22068387264, 331233939624, 6005919062528, 102144359744192, 2054811316442112, 39053339674065360, 863259240785840640, 18132529836143846560, 436899062862222484480
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
For odd n, there are no symmetrical configurations of non-attacking rooks without a rook in the main diagonal, so a(2n+1) = A003471(2n+1) / 8. For even n, configurations with rotational and diagonal symmetry are possible.
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
Case n=4: The 2 nonequivalent solutions are:
_ x _ _ _ x _ _
x _ _ _ _ _ _ x
_ _ _ x x _ _ _
_ _ x _ _ _ x _
Case n=5: The 2 nonequivalent solutions are:
_ x _ _ _ _ x _ _ _
x _ _ _ _ _ _ _ _ x
_ _ _ x _ x _ _ _ _
_ _ _ _ x _ _ x _ _
_ _ x _ _ _ _ _ x _
|
|
MATHEMATICA
|
sf[n_] := n! * SeriesCoefficient[Exp[-x ] / (1 - x), {x, 0, n}];
F[n_] := (Clear[v]; v[_] = 0; For[m = 4, m <= n, m++, v[m] = (m - 1)*v[m - 1] + 2*If[OddQ[m], (m - 1)*v[m - 2], (m - 2)*If[m == 4, 1, v[m - 4]]]]; v[n]);
d[n_] := Sum[(-1)^(n-k)*Binomial[n, k]*(2k)!/(2^k*k!), {k, 0, n}];
R[n_] := If[OddQ[n], 0, (n - 1)!*2/(n/2 - 1)!];
a[0] = 1; a[n_] := (F[n] + If[OddQ[n], 0, m = n/2; 2^m * sf[m] + 2*R[m] + 2*d[m]])/8;
|
|
PROG
|
sf(n) = {n! * polcoeff( exp(-x + x * O(x^n)) / (1 - x), n)}
F(n) = {my(v = vector(n)); for(n=4, length(v), v[n]=(n-1)*v[n-1]+2*if(n%2==1, (n-1)*v[n-2], (n-2)*if(n==4, 1, v[n-4]))); v[n]}
D(n) = {sum(k=0, n, (-1)^(n-k) * binomial(n, k) * (2*k)!/(2^k*k!))}
R(n) = {if(n%2==1, 0, (n-1)!*2/(n/2-1)!)}
a(n) = {(F(n) + if(n%2==1, 0, my(m=n/2); 2^m * sf(m) + 2*R(m) + 2*D(m)))/8}
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|