login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: A( x*A(x) - 2*x*A(x)^2 + x*A(x)^3 ) = x^2.
2

%I #9 Sep 12 2017 23:29:54

%S 1,2,5,22,104,508,2581,13590,73255,402096,2240803,12645756,72120577,

%T 415017628,2406756231,14051487550,82524268241,487209739242,

%U 2889872479365,17213187356000,102916691619082,617446202168776,3715938753908449,22427371853933596,135714772335246022,823237636321437554,5004875492077075585,30490222425814170940

%N G.f. A(x) satisfies: A( x*A(x) - 2*x*A(x)^2 + x*A(x)^3 ) = x^2.

%H Paul D. Hanna, <a href="/A272821/b272821.txt">Table of n, a(n) for n = 1..300</a>

%e G.f.: A(x) = x + 2*x^2 + 5*x^3 + 22*x^4 + 104*x^5 + 508*x^6 + 2581*x^7 + 13590*x^8 + 73255*x^9 + 402096*x^10 + 2240803*x^11 + 12645756*x^12 +...

%e where A( x*A(x)*(1 - A(x))^2 ) = x^2.

%e RELATED SERIES.

%e A(x)^2 = x^2 + 4*x^3 + 14*x^4 + 64*x^5 + 321*x^6 + 1652*x^7 + 8718*x^8 + 47160*x^9 + 259848*x^10 + 1452340*x^11 + 8215412*x^12 +...

%e A(x)^3 = x^3 + 6*x^4 + 27*x^5 + 134*x^6 + 711*x^7 + 3846*x^8 + 21104*x^9 + 117600*x^10 + 663747*x^11 + 3785068*x^12 + 21775758*x^13 +...

%e A(x)^4 = x^4 + 8*x^5 + 44*x^6 + 240*x^7 + 1350*x^8 + 7664*x^9 + 43736*x^10 + 251408*x^11 + 1455577*x^12 + 8480432*x^13 + 49687828*x^14 +...

%e A(x) - 2*A(x)^2 + A(x)^4 = x - 2*x^3 + 3*x^5 - 12*x^7 + 39*x^9 - 130*x^11 + 495*x^13 - 1932*x^15 + 7818*x^17 +...

%e Let B(x) be the series reversion of g.f. A(x), so that A(B(x)) = x, then

%e B(x) = x - 2*x^2 + 3*x^3 - 12*x^4 + 39*x^5 - 130*x^6 + 495*x^7 - 1932*x^8 + 7818*x^9 - 32496*x^10 + 137158*x^11 - 587476*x^12 + 2544253*x^13 - 11117046*x^14 + 48960141*x^15 +...

%e where B(x^2) = x*A(x)*(1 - A(x))^2,

%e also, B(B(x)^2) = x*(1-x)^2 * B(x).

%e The square-root of x*A(x) is an integer series:

%e sqrt( x*A(x) ) = x + x^2 + 2*x^3 + 9*x^4 + 41*x^5 + 195*x^6 + 973*x^7 + 5063*x^8 + 27023*x^9 + 147147*x^10 + 814736*x^11 + 4573323*x^12 + 25964578*x^13 + 148836155*x^14 + 860244693*x^15 +...+ A292078(n)*x^n +...

%e Given g.f. A(x), the g.f. of A292078 equals G(x) such that

%e (1) G(x)^2 = A(x^2),

%e (2) G( x*G(x) - x*G(x)^3 ) = x^2.

%o (PARI) {a(n) = my(A=[1,2]); for(i=1,n, A=concat(A,0); F=x*Ser(A); A[#A] = -Vec( subst(F,x, x*F*(1-F)^2 ) )[#A] );A[n]}

%o for(n=1,40,print1(a(n),", "))

%Y Cf. A292078.

%K nonn

%O 1,2

%A _Paul D. Hanna_, May 09 2016