login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241345
Number of n X 2 0..3 arrays with no element equal to the same number of vertical neighbors as horizontal neighbors, with new values 0..3 introduced in row major order.
1
1, 2, 5, 22, 103, 519, 2656, 13798, 72005, 377132, 1978263, 10387415, 54569162, 286758658, 1507147669, 7922014506, 41642626111, 218903934463, 1150737770732, 6049275496670, 31800411817677, 167171979847160, 878810026664375
OFFSET
1,2
LINKS
FORMULA
Empirical: a(n) = 8*a(n-1) - 8*a(n-2) - 48*a(n-3) + 59*a(n-4) + 102*a(n-5) - 77*a(n-6) - 112*a(n-7) + 38*a(n-8) + 66*a(n-9) - 27*a(n-10) for n>11.
Empirical g.f.: x*(1 - 6*x - 3*x^2 + 46*x^3 + 4*x^4 - 109*x^5 - 38*x^6 + 104*x^7 + 31*x^8 - 51*x^9 + 9*x^10) / ((1 - x)*(1 - 3*x)*(1 - x - 2*x^2 - x^3 + x^4)*(1 - 3*x - 12*x^2 - x^3 + 9*x^4)). - Colin Barker, Oct 30 2018
EXAMPLE
Some solutions for n=4:
..0..1....0..0....0..1....0..0....0..1....0..1....0..0....0..0....0..0....0..0
..0..1....1..1....0..1....1..1....0..1....0..1....1..1....1..1....1..1....1..1
..2..1....2..3....2..2....0..0....0..2....1..0....0..2....0..0....2..2....2..2
..2..1....2..3....3..3....1..1....0..2....1..0....0..2....2..2....3..3....0..0
CROSSREFS
Column 2 of A241349.
Sequence in context: A369830 A056840 A321608 * A272821 A278439 A126797
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 19 2014
STATUS
approved