OFFSET
0,3
COMMENTS
Polya proved (see Ahrens) that the number of solutions to this problem for an m X m board is > 0 iff m is coprime to 6. - Jonathan Vos Post, Feb 20 2005
REFERENCES
W. Ahrens, Mathematische Unterhaltungen und Spiele, Vol. 1, B. G. Teubner, Leipzig, 1921, pp. 363-374.
R. K. Guy, Unsolved problems in Number Theory, 3rd Edn., Springer, 1994, p. 202 [with extensive bibliography]
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Ilan Vardi, Computational Recreations in Mathematica, Addison-Wesly, 1991, Chapter 6.
LINKS
M. R. Engelhardt, A group-based search for solutions of the n-queens problem, Discr. Math., 307 (2007), 2535-2551.
Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, pp. 62-63.
I. Rivin, I. Vardi and P. Zimmermann, The n-queens problem, Amer. Math. Monthly, 101 (1994), 629-639.
Eric Weisstein's World of Mathematics, Queens Problem.
FORMULA
a(n) = A071607(n) * (2*n+1). - Eduard I. Vatutin, Jan 22 2024, corrected Mar 14 2024
a(n) = A342990(n) / (2n)!. - Eduard I. Vatutin, Apr 09 2024
EXAMPLE
From Eduard I. Vatutin, Jan 22 2024: (Start)
N=5=2*2+1 (all 10 solutions are shown below):
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
| Q . . . . | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |
| . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | Q . . . . |
| . . . . Q | | . Q . . . | | Q . . . . | | . . Q . . | | . . . Q . |
| . Q . . . | | . . . . Q | | . . Q . . | | Q . . . . | | . Q . . . |
| . . . Q . | | . . Q . . | | . . . . Q | | . . . Q . | | . . . . Q |
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
| . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | . . . . Q |
| . . . . Q | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |
| . Q . . . | | . . Q . . | | . . . . Q | | . . . Q . | | Q . . . . |
| . . . Q . | | . . . . Q | | . . Q . . | | Q . . . . | | . . . Q . |
| Q . . . . | | . Q . . . | | Q . . . . | | . . Q . . | | . Q . . . |
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
N=7=2*3+1:
+---------------+
| Q . . . . . . |
| . . . Q . . . |
| . . . . . . Q |
| . . Q . . . . |
| . . . . . Q . |
| . Q . . . . . |
| . . . . Q . . |
+---------------+
N=11=5*2+1:
+-----------------------+
| Q . . . . . . . . . . |
| . . Q . . . . . . . . |
| . . . . Q . . . . . . |
| . . . . . . Q . . . . |
| . . . . . . . . Q . . |
| . . . . . . . . . . Q |
| . Q . . . . . . . . . |
| . . . Q . . . . . . . |
| . . . . . Q . . . . . |
| . . . . . . . Q . . . |
| . . . . . . . . . Q . |
+-----------------------+
N=13=6*2+1 (first example can be found using a knight moving from cell (1,1) with dx=1 and dy=2, second example can't be obtained in the same way):
+---------------------------+ +---------------------------+
| Q . . . . . . . . . . . . | | Q . . . . . . . . . . . . |
| . . Q . . . . . . . . . . | | . . Q . . . . . . . . . . |
| . . . . Q . . . . . . . . | | . . . . Q . . . . . . . . |
| . . . . . . Q . . . . . . | | . . . . . . Q . . . . . . |
| . . . . . . . . Q . . . . | | . . . . . . . . . . . Q . |
| . . . . . . . . . . Q . . | | . . . . . . . . . Q . . . |
| . . . . . . . . . . . . Q | | . . . . . . . . . . . . Q |
| . Q . . . . . . . . . . . | | . . . . . Q . . . . . . . |
| . . . Q . . . . . . . . . | | . . . Q . . . . . . . . . |
| . . . . . Q . . . . . . . | | . Q . . . . . . . . . . . |
| . . . . . . . Q . . . . . | | . . . . . . . Q . . . . . |
| . . . . . . . . . Q . . . | | . . . . . . . . . . Q . . |
| . . . . . . . . . . . Q . | | . . . . . . . . Q . . . . |
+---------------------------+ +---------------------------+
(End)
CROSSREFS
KEYWORD
nonn,nice,hard,more
AUTHOR
EXTENSIONS
Two more terms from Matthias Engelhardt, Dec 17 1999 and Jan 11 2001
13404947681712 from Matthias Engelhardt, May 01 2005
STATUS
approved