|
|
A007705
|
|
Number of ways of arranging 2n+1 nonattacking queens on a 2n+1 X 2n+1 toroidal board.
(Formerly M4691)
|
|
23
|
|
|
1, 0, 10, 28, 0, 88, 4524, 0, 140692, 820496, 0, 128850048, 1957725000, 0, 605917055356, 13404947681712, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Polya proved [see Ahrens] that the number of solution to this problem for an m X m board is > 0 iff m is coprime to 6. - Jonathan Vos Post, Feb 20 2005
|
|
REFERENCES
|
W. Ahrens, Mathematische Unterhaltungen und Spiele, Vol. 1, B. G. Teubner, Leipzig, 1921, pp. 363-374.
R. K. Guy, Unsolved problems in Number Theory, 3rd Edn., Springer, 1994, p. 202 [with extensive bibliography]
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Ilan Vardi, Computational Recreations in Mathematica, Addison-Wesly, 1991, Chapter 6.
|
|
LINKS
|
Table of n, a(n) for n=0..16.
M. R. Engelhardt, A group-based search for solutions of the n-queens problem, Discr. Math., 307 (2007), 2535-2551.
V. Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 62-63.
I. Rivin, I. Vardi and P. Zimmermann, The n-queens problem, Amer. Math. Monthly, 101 (1994), 629-639.
Eric Weisstein's World of Mathematics, Queens Problem.
|
|
CROSSREFS
|
Cf. A051906.
Sequence in context: A219629 A262316 A262919 * A196356 A196359 A184686
Adjacent sequences: A007702 A007703 A007704 * A007706 A007707 A007708
|
|
KEYWORD
|
nonn,nice,hard
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
Two more terms from Matthias Engelhardt, Dec 17 1999 and Jan 11 2001
13404947681712 from Matthias Engelhardt, May 01 2005
|
|
STATUS
|
approved
|
|
|
|