login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007705 Number of ways of arranging 2n+1 nonattacking queens on a 2n+1 X 2n+1 toroidal board.
(Formerly M4691)
23
1, 0, 10, 28, 0, 88, 4524, 0, 140692, 820496, 0, 128850048, 1957725000, 0, 605917055356, 13404947681712, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Polya proved [see Ahrens] that the number of solution to this problem for an m X m board is > 0 iff m is coprime to 6. - Jonathan Vos Post, Feb 20 2005

REFERENCES

W. Ahrens, Mathematische Unterhaltungen und Spiele, Vol. 1, B. G. Teubner, Leipzig, 1921, pp. 363-374.

R. K. Guy, Unsolved problems in Number Theory, 3rd Edn., Springer, 1994, p. 202 [with extensive bibliography]

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Ilan Vardi, Computational Recreations in Mathematica, Addison-Wesly, 1991, Chapter 6.

LINKS

Table of n, a(n) for n=0..16.

M. R. Engelhardt, A group-based search for solutions of the n-queens problem, Discr. Math., 307 (2007), 2535-2551.

V. Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 62-63.

I. Rivin, I. Vardi and P. Zimmermann, The n-queens problem, Amer. Math. Monthly, 101 (1994), 629-639.

Eric Weisstein's World of Mathematics, Queens Problem.

CROSSREFS

Cf. A051906.

Sequence in context: A219629 A262316 A262919 * A196356 A196359 A184686

Adjacent sequences:  A007702 A007703 A007704 * A007706 A007707 A007708

KEYWORD

nonn,nice,hard

AUTHOR

N. J. A. Sloane

EXTENSIONS

Two more terms from Matthias Engelhardt, Dec 17 1999 and Jan 11 2001

13404947681712 from Matthias Engelhardt, May 01 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 03:28 EDT 2022. Contains 354110 sequences. (Running on oeis4.)