login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways of arranging 2n+1 nonattacking queens on a 2n+1 X 2n+1 toroidal board.
(Formerly M4691)
26

%I M4691 #59 Apr 10 2024 09:16:52

%S 1,0,10,28,0,88,4524,0,140692,820496,0,128850048,1957725000,0,

%T 605917055356,13404947681712,0

%N Number of ways of arranging 2n+1 nonattacking queens on a 2n+1 X 2n+1 toroidal board.

%C Polya proved (see Ahrens) that the number of solutions to this problem for an m X m board is > 0 iff m is coprime to 6. - _Jonathan Vos Post_, Feb 20 2005

%D W. Ahrens, Mathematische Unterhaltungen und Spiele, Vol. 1, B. G. Teubner, Leipzig, 1921, pp. 363-374.

%D R. K. Guy, Unsolved problems in Number Theory, 3rd Edn., Springer, 1994, p. 202 [with extensive bibliography]

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D Ilan Vardi, Computational Recreations in Mathematica, Addison-Wesly, 1991, Chapter 6.

%H M. R. Engelhardt, <a href="http://dx.doi.org/10.1016/j.disc.2007.01.007">A group-based search for solutions of the n-queens problem</a>, Discr. Math., 307 (2007), 2535-2551.

%H Vaclav Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>, 6ed, 2013, pp. 62-63.

%H I. Rivin, I. Vardi and P. Zimmermann, <a href="https://www.jstor.org/stable/2974691">The n-queens problem</a>, Amer. Math. Monthly, 101 (1994), 629-639.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/QueensProblem.html">Queens Problem</a>.

%H Eduard I. Vatutin, <a href="https://vk.com/wall162891802_2691">Numerical formula between number of horizontally or vertically semicyclic diagonal Latin squares and number of toroidal n-queens problem solutions</a> (in Russian).

%F a(n) = A071607(n) * (2*n+1). - _Eduard I. Vatutin_, Jan 22 2024, corrected Mar 14 2024

%F a(n) = A342990(n) / (2n)!. - _Eduard I. Vatutin_, Apr 09 2024

%e From _Eduard I. Vatutin_, Jan 22 2024: (Start)

%e N=5=2*2+1 (all 10 solutions are shown below):

%e +-----------+ +-----------+ +-----------+ +-----------+ +-----------+

%e | Q . . . . | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |

%e | . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | Q . . . . |

%e | . . . . Q | | . Q . . . | | Q . . . . | | . . Q . . | | . . . Q . |

%e | . Q . . . | | . . . . Q | | . . Q . . | | Q . . . . | | . Q . . . |

%e | . . . Q . | | . . Q . . | | . . . . Q | | . . . Q . | | . . . . Q |

%e +-----------+ +-----------+ +-----------+ +-----------+ +-----------+

%e +-----------+ +-----------+ +-----------+ +-----------+ +-----------+

%e | . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | . . . . Q |

%e | . . . . Q | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |

%e | . Q . . . | | . . Q . . | | . . . . Q | | . . . Q . | | Q . . . . |

%e | . . . Q . | | . . . . Q | | . . Q . . | | Q . . . . | | . . . Q . |

%e | Q . . . . | | . Q . . . | | Q . . . . | | . . Q . . | | . Q . . . |

%e +-----------+ +-----------+ +-----------+ +-----------+ +-----------+

%e N=7=2*3+1:

%e +---------------+

%e | Q . . . . . . |

%e | . . . Q . . . |

%e | . . . . . . Q |

%e | . . Q . . . . |

%e | . . . . . Q . |

%e | . Q . . . . . |

%e | . . . . Q . . |

%e +---------------+

%e N=11=5*2+1:

%e +-----------------------+

%e | Q . . . . . . . . . . |

%e | . . Q . . . . . . . . |

%e | . . . . Q . . . . . . |

%e | . . . . . . Q . . . . |

%e | . . . . . . . . Q . . |

%e | . . . . . . . . . . Q |

%e | . Q . . . . . . . . . |

%e | . . . Q . . . . . . . |

%e | . . . . . Q . . . . . |

%e | . . . . . . . Q . . . |

%e | . . . . . . . . . Q . |

%e +-----------------------+

%e N=13=6*2+1 (first example can be found using a knight moving from cell (1,1) with dx=1 and dy=2, second example can't be obtained in the same way):

%e +---------------------------+ +---------------------------+

%e | Q . . . . . . . . . . . . | | Q . . . . . . . . . . . . |

%e | . . Q . . . . . . . . . . | | . . Q . . . . . . . . . . |

%e | . . . . Q . . . . . . . . | | . . . . Q . . . . . . . . |

%e | . . . . . . Q . . . . . . | | . . . . . . Q . . . . . . |

%e | . . . . . . . . Q . . . . | | . . . . . . . . . . . Q . |

%e | . . . . . . . . . . Q . . | | . . . . . . . . . Q . . . |

%e | . . . . . . . . . . . . Q | | . . . . . . . . . . . . Q |

%e | . Q . . . . . . . . . . . | | . . . . . Q . . . . . . . |

%e | . . . Q . . . . . . . . . | | . . . Q . . . . . . . . . |

%e | . . . . . Q . . . . . . . | | . Q . . . . . . . . . . . |

%e | . . . . . . . Q . . . . . | | . . . . . . . Q . . . . . |

%e | . . . . . . . . . Q . . . | | . . . . . . . . . . Q . . |

%e | . . . . . . . . . . . Q . | | . . . . . . . . Q . . . . |

%e +---------------------------+ +---------------------------+

%e (End)

%Y Cf. A051906, A071607, A342990.

%K nonn,nice,hard,more

%O 0,3

%A _N. J. A. Sloane_

%E Two more terms from _Matthias Engelhardt_, Dec 17 1999 and Jan 11 2001

%E 13404947681712 from _Matthias Engelhardt_, May 01 2005