Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jul 23 2023 06:07:40
%S 0,1,1,1,2,1,1,2,1,1,2,1,2,3,1,1,2,2,1,2,1,1,3,1,2,2,1,2,2,1,1,3,2,1,
%T 2,1,1,3,2,1,4,1,2,2,1,2,2,2,1,3,1,1,3,1,1,2,1,2,3,2,2,2,3,1,2,1,2,4,
%U 1,1,2,2,2,3,1,1,3,2,1,2,2,1,3,1,2,3,1,3,2,1,1,2,2,2,4,1,1,3,1,1,2,2,2,3,2
%N a(n) = Omega(2n-1) (number of prime factors of the n-th odd number, counted with multiplicity).
%C Omega(n) of the odd integers follows a pattern similar to A001222, with 4 maxima instead of 2 - i.e. between 2^n and (2^(n+1) - 1) there are two numbers with exactly n factors (2^n and 2^(n-1) * 3) while the odd integers have 4 maxima (3^n, 3^(n-1) * 5, 3^(n-1) * 7, 5^2*3^(n-2)) between 3^n and 3^(n+1) - 1.
%H Antti Karttunen, <a href="/A091304/b091304.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = Omega(2n-1). [Odd bisection of A001222.]
%F From _Antti Karttunen_, May 31 2017: (Start)
%F For n >= 1, a(n) = A000120(A244153(n)).
%F For n >= 2, a(n) = 1+A285716(n).
%F (End)
%e Omega(1) = 0, Omega(9) = 2 (3 * 3 = 9), Omega (243) = 5 (3 * 3 * 3 * 3 * 3 = 243), Omega(51) = 2 (3 * 17 = 51).
%e For n = 92, A001222(2*92 - 1) = A001222(183) = 2 as 183 = 3*61, thus a(92) = 2. - _Antti Karttunen_, May 31 2017
%t a[n_] := PrimeOmega[2*n - 1]; Array[a, 100] (* _Amiram Eldar_, Jul 23 2023 *)
%o (PARI) a(n) = bigomega(2*n-1) \\ _Michel Marcus_, Jul 26 2013, edited to reflect the changed starting offset by _Antti Karttunen_, May 31 2017
%Y One more than A285716 (after the initial term).
%Y Cf. A001222, A000120, A092523, A099774, A099990, A244153, A278223, A286582.
%Y Cf. A006254 (positions of ones).
%K easy,nonn
%O 1,5
%A _Andrew S. Plewe_, Feb 20 2004
%E Starting offset changed to 1 and the definition modified respectively. Also values of the initial term and of term a(92) (= 2, previously a(91) = 1) corrected by _Antti Karttunen_, May 31 2017