

A049407


Numbers n such that n^3 + n + 1 is prime.


39



1, 2, 3, 5, 6, 8, 9, 12, 15, 17, 18, 21, 29, 30, 32, 39, 41, 42, 44, 48, 53, 54, 56, 60, 69, 71, 74, 77, 83, 87, 95, 102, 104, 108, 116, 117, 120, 126, 131, 135, 143, 144, 146, 152, 153, 155, 162, 168, 177, 179, 180, 186, 191, 207, 212, 219, 221, 225, 239, 240, 243
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

For s = 5, 8, 11, 14, 17, 20, ... (A016789(s) for s>=2), n_s = 1 + n + n^s is composite for n>1. Also for n=1, n_s = 3 is a prime for any s. Here we consider the case s=3.
If n=1 (mod 3), n_s = 0 (mod 3) for any s and is not prime for n > 1. Thus for n > 1, a(n) is not 1 mod 3 and this is true for any similar sequence based on other s value (A002384, A049408, A075723).  JeanChristophe HervĂ©, Sep 20 2014
Corresponding primes are in A095692.


LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000


EXAMPLE

3 is a term because 1 + 3 + 3^3 = 31 is a prime.


MAPLE

A049407:=n>`if`(isprime(n^3+n+1), n, NULL): seq(A049407(n), n=1..300); # Wesley Ivan Hurt, Nov 14 2014


MATHEMATICA

Select[Range[500], PrimeQ[Total[#^Range[1, 3, 2]] + 1] &] (* Vincenzo Librandi, Jun 27 2014 *)


PROG

(PARI) is(n)=isprime(n^3+n+1) \\ Charles R Greathouse IV, Nov 20 2012
(MAGMA) [n: n in [0..300]  IsPrime(s) where s is 1+&+[n^i: i in [1..3 by 2]]]; // Vincenzo Librandi, Jun 27 2014


CROSSREFS

Cf. A002384 (s=2), A049408 (s=4), A075723 (s=6).
Cf. A095692 (corresponding primes).
Sequence in context: A239091 A272341 A075725 * A030759 A030709 A226806
Adjacent sequences: A049404 A049405 A049406 * A049408 A049409 A049410


KEYWORD

nonn,easy,nice


AUTHOR

N. J. A. Sloane


STATUS

approved



