The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A189919 O.g.f.: Sum_{n>=0} n! * x^n / Product_{k=1..n} (1 - (2*k-1)*x). 2

%I #24 Nov 01 2014 16:31:55

%S 1,1,3,15,105,933,10023,126195,1821165,29625513,536223723,10687190775,

%T 232544252625,5484912970893,139387510991823,3796699051667355,

%U 110344769466766485,3408297041928101073,111490951250101642323,3850360096498676899935

%N O.g.f.: Sum_{n>=0} n! * x^n / Product_{k=1..n} (1 - (2*k-1)*x).

%H Vaclav Kotesovec, <a href="/A189919/b189919.txt">Table of n, a(n) for n = 0..350</a>

%F a(n) ~ 2^(n+1) * n! / (3^(3/2) * (log(3))^(n+1)). - _Vaclav Kotesovec_, Nov 01 2014

%e G.f.: A(x) = 1 + x + 3*x^2 + 15*x^3 + 105*x^4 + 933*x^5 + 10023*x^6 +...

%e where

%e A(x) = 1 + x/(1-x) + 2!*x^2/((1-x)*(1-3*x)) + 3!*x^3/((1-x)*(1-3*x)*(1-5*x)) + 4!*x^4/((1-x)*(1-3*x)*(1-5*x)*(1-7*x)) +...

%o (PARI) {a(n)=polcoeff(sum(m=0,n,m!*x^m/prod(k=1,m,1-(2*k-1)*x+x*O(x^n))),n)}

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jul 22 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 04:31 EDT 2024. Contains 372807 sequences. (Running on oeis4.)