The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112883 A skew Jacobsthal-Pascal matrix. 1
1, 0, 1, 0, 1, 3, 0, 0, 2, 5, 0, 0, 1, 7, 11, 0, 0, 0, 3, 16, 21, 0, 0, 0, 1, 12, 41, 43, 0, 0, 0, 0, 4, 34, 94, 85, 0, 0, 0, 0, 1, 18, 99, 219, 171, 0, 0, 0, 0, 0, 5, 60, 261, 492, 341, 0, 0, 0, 0, 0, 1, 25, 195, 678, 1101, 683, 0, 0, 0, 0, 0, 0, 6, 95, 576, 1692, 2426, 1365, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
T(n,n) is A001045(n), row sums are A006130, column sums are A002605. Compare with [0,1,-1,0,0,..] DELTA [1,2,-2,0,0,...] where DELTA is the operator defined in A084938. A skewed version of the Riordan array (1/(1-x-2x^2),x/(1-x-2x^2)) (A073370).
Modulo 2, this sequence gives A106344. - Philippe Deléham, Dec 18 2008
LINKS
FORMULA
From Philippe Deléham: (Start)
G.f.: 1/(1-yx(1-x)-2x^2*y*2);
Number triangle T(n, k) = Sum_{j=0..2k-n} C(n-k+j, n-k)*C(j, 2k-n-j)*2^(2k-n-j);
T(n, k) = A073370(k, n-k); T(n, k) = T(n-1, k-1) + T(n-2, k-1) + 2*T(n-2, k-2). (End)
EXAMPLE
Rows begin
1;
0, 1;
0, 1, 3;
0, 0, 2, 5;
0, 0, 1, 7, 11;
0, 0, 0, 3, 16, 21;
0, 0, 0, 1, 12, 41, 43;
0, 0, 0, 0, 4, 34, 94, 85;
0, 0, 0, 0, 1, 18, 99, 219, 171;
0, 0, 0, 0, 0, 5, 60, 261, 492, 341;
0, 0, 0, 0, 0, 1, 25, 195, 678, 1101, 683;
CROSSREFS
Cf. A111006.
Sequence in context: A357317 A357236 A156548 * A117138 A292255 A362313
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Oct 05 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 12:18 EDT 2024. Contains 372630 sequences. (Running on oeis4.)