login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112883
A skew Jacobsthal-Pascal matrix.
1
1, 0, 1, 0, 1, 3, 0, 0, 2, 5, 0, 0, 1, 7, 11, 0, 0, 0, 3, 16, 21, 0, 0, 0, 1, 12, 41, 43, 0, 0, 0, 0, 4, 34, 94, 85, 0, 0, 0, 0, 1, 18, 99, 219, 171, 0, 0, 0, 0, 0, 5, 60, 261, 492, 341, 0, 0, 0, 0, 0, 1, 25, 195, 678, 1101, 683, 0, 0, 0, 0, 0, 0, 6, 95, 576, 1692, 2426, 1365, 0, 0, 0, 0, 0
OFFSET
0,6
COMMENTS
T(n,n) is A001045(n), row sums are A006130, column sums are A002605. Compare with [0,1,-1,0,0,..] DELTA [1,2,-2,0,0,...] where DELTA is the operator defined in A084938. A skewed version of the Riordan array (1/(1-x-2x^2),x/(1-x-2x^2)) (A073370).
Modulo 2, this sequence gives A106344. - Philippe Deléham, Dec 18 2008
FORMULA
From Philippe Deléham: (Start)
G.f.: 1/(1-yx(1-x)-2x^2*y*2);
Number triangle T(n, k) = Sum_{j=0..2k-n} C(n-k+j, n-k)*C(j, 2k-n-j)*2^(2k-n-j);
T(n, k) = A073370(k, n-k); T(n, k) = T(n-1, k-1) + T(n-2, k-1) + 2*T(n-2, k-2). (End)
EXAMPLE
Rows begin
1;
0, 1;
0, 1, 3;
0, 0, 2, 5;
0, 0, 1, 7, 11;
0, 0, 0, 3, 16, 21;
0, 0, 0, 1, 12, 41, 43;
0, 0, 0, 0, 4, 34, 94, 85;
0, 0, 0, 0, 1, 18, 99, 219, 171;
0, 0, 0, 0, 0, 5, 60, 261, 492, 341;
0, 0, 0, 0, 0, 1, 25, 195, 678, 1101, 683;
CROSSREFS
Cf. A111006.
Sequence in context: A357317 A357236 A156548 * A117138 A292255 A362313
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Oct 05 2005
STATUS
approved