The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112884 Number of bits required to represent binomial(2^n, 2^(n-1)). 0
2, 3, 7, 14, 30, 61, 125, 252, 508, 1019, 2043, 4090, 8186, 16377, 32761, 65528, 131064, 262135, 524279, 1048566, 2097142, 4194293, 8388597 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
FORMULA
Appears to be equal to 2^n - floor(n / 2).
G.f.: x*(-2*x^3 + 3*x - 2)/((x - 1)^2*(2*x^2 + x - 1)) [Conjectured by Harvey P. Dale, Apr 06 2011]
a(n) = A070939(A037293(n)). - Alois P. Heinz, Feb 17 2024
EXAMPLE
a(2) = 3 because binomial(2^2, 2^1) in binary = 110.
MATHEMATICA
Table[IntegerLength[Binomial[2^n, 2^(n-1)], 2], {n, 25}] (* or *)
CoefficientList[Series[(-2 x^3+3x-2)/((x-1)^2 (2x^2+x-1)), {x, 0, 25}], x] (* Harvey P. Dale, Apr 06 2011 *)
PROG
(PHP) $LastFact = gmp_init('1'); for ($i = 2; $i !== 65536; $i *= 2) { $Fact = gmp_fact($i); $Result = gmp_div_q($Fact, gmp_pow($OldFact, 2)); $LastFact = $Fact; echo gmp_strval($Result, 2).'<br>'; }
CROSSREFS
a(n) represents the size of A037293 in binary - see also the central binomial coefficients: A001405.
Cf. A070939.
Sequence in context: A281716 A192570 A019595 * A103421 A205484 A151530
KEYWORD
easy,nonn
AUTHOR
Matt Erbst (matt(AT)erbst.org), Oct 04 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 08:52 EDT 2024. Contains 372760 sequences. (Running on oeis4.)