The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A037293 a(n) = Sum_{i=0..2^(n-1)} binomial(2^(n-1), i)^2. 9
 1, 2, 6, 70, 12870, 601080390, 1832624140942590534, 23951146041928082866135587776380551750, 5768658823449206338089748357862286887740211701975162032608436567264518750790 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..11 N. G. Johansson, Efficient Simulation of the Deutsch-Jozsa Algorithm, Master's Project, Department of Electrical Engineering & Department of Physics, Chemistry and Biology, Linkoping University, April, 2015. See Eq. (3.15). FORMULA a(n) = A001405(2^n). - Labos Elemer, Apr 11 2001 a(n) ~ 2^(2^n - n/2 + 1/2)/ sqrt(Pi). - Vaclav Kotesovec, Nov 13 2014 a(n) = A000984(2^(n-1)) = binomial(2^n,2^(n-1)) = (2^n)!/((2^(n-1))!)^2 for n > 0. - Martin Renner, Jan 16 2017 a(n) = (2^(2^n)*(2^n + 2)*(1/2*(2^n + 1))!)/(sqrt(Pi)*(2^n + 1)*(1/2*(2^n + 2))!) = (2^(2^n)*(2^n + 2)*Gamma((2^n+3)/2))/(sqrt(Pi)*(2^n + 1)*Gamma(2^(n-1)+2)) for n > 0. - Alexander R. Povolotsky, Nov 19 2022 MAPLE a:= n-> (t-> binomial(t, iquo(t, 2)))(2^n): seq(a(n), n=0..8); # Alois P. Heinz, Jan 14 2017 # a:=n->sum(binomial(2^(n-1), i)^2, i=0..2^(n-1)); seq(a(n), n=0..8); a:=n->piecewise(n=0, 1, binomial(2^n, 2^(n-1))); seq(a(n), n=0..8); # Martin Renner, Jan 16 2017 MATHEMATICA Flatten[{1, Table[Binomial[2^n, 2^(n-1)], {n, 1, 8}]}] (* Vaclav Kotesovec, Nov 13 2014 *) PROG (PARI) a(n) = sum(i=0, 2^(n-1), binomial(2^(n-1), i)^2) \\ Michel Marcus, Jun 09 2013 CROSSREFS Cf. A000079, A000984, A001405. Sequence in context: A244494 A136268 A030242 * A129785 A000896 A103527 Adjacent sequences: A037290 A037291 A037292 * A037294 A037295 A037296 KEYWORD nonn,easy AUTHOR John Tromp, Dec 11 1999 EXTENSIONS More terms from Erich Friedman STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 14:05 EDT 2023. Contains 363147 sequences. (Running on oeis4.)