The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244494 Number of quadratic balanced Boolean functions of n variables. 0
 2, 6, 70, 870, 36518, 1828134, 300503590, 60273667110, 39431461330982, 31648840352155686, 82716718794775795750, 265590372390118027343910, 2775704953984257023035176998, 35650312393325457366304103888934, 1490221075739321877604231759426844710 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Thomas W. Cusick and Yuri L. Borissov, A refinement of Cusick-Cheon bound for the second order binary Reed-Muller code, Discrete Math. 310 (2010), no. 24, 3537--3543. MR2734734 (2011j:94188). FORMULA See Maple code. MAPLE f:=proc(n) add( 2^(h*(h+1)+1)* mul( 2^(n-i)-1, i=0..2*h)/mul(2^(2*j)-1, j=1..h), h=1..floor(n/2))+(2^(n+1)-2); end; [seq(f(n), n=1..25)]; MATHEMATICA f[n_] := Sum[2^(h(h+1)+1) Product[2^(n-i)-1, {i, 0, 2h}]/ Product[2^(2j)-1, {j, 1, h}], {h, 1, n/2}]+(2^(n+1)-2); Array[f, 25] (* Jean-François Alcover, Mar 24 2021, after Maple code *) CROSSREFS Sequence in context: A097419 A219037 A156458 * A136268 A030242 A037293 Adjacent sequences: A244491 A244492 A244493 * A244495 A244496 A244497 KEYWORD nonn AUTHOR N. J. A. Sloane, Jul 05 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 22 04:35 EDT 2023. Contains 361413 sequences. (Running on oeis4.)