login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244494
Number of quadratic balanced Boolean functions of n variables.
0
2, 6, 70, 870, 36518, 1828134, 300503590, 60273667110, 39431461330982, 31648840352155686, 82716718794775795750, 265590372390118027343910, 2775704953984257023035176998, 35650312393325457366304103888934, 1490221075739321877604231759426844710
OFFSET
1,1
LINKS
Thomas W. Cusick and Yuri L. Borissov, A refinement of Cusick-Cheon bound for the second order binary Reed-Muller code, Discrete Math. 310 (2010), no. 24, 3537--3543. MR2734734 (2011j:94188).
FORMULA
See Maple code.
MAPLE
f:=proc(n) add( 2^(h*(h+1)+1)*
mul( 2^(n-i)-1, i=0..2*h)/mul(2^(2*j)-1, j=1..h),
h=1..floor(n/2))+(2^(n+1)-2); end;
[seq(f(n), n=1..25)];
MATHEMATICA
f[n_] := Sum[2^(h(h+1)+1) Product[2^(n-i)-1, {i, 0, 2h}]/
Product[2^(2j)-1, {j, 1, h}], {h, 1, n/2}]+(2^(n+1)-2);
Array[f, 25] (* Jean-François Alcover, Mar 24 2021, after Maple code *)
CROSSREFS
Sequence in context: A097419 A219037 A156458 * A136268 A030242 A037293
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 05 2014
STATUS
approved