|
|
A244494
|
|
Number of quadratic balanced Boolean functions of n variables.
|
|
0
|
|
|
2, 6, 70, 870, 36518, 1828134, 300503590, 60273667110, 39431461330982, 31648840352155686, 82716718794775795750, 265590372390118027343910, 2775704953984257023035176998, 35650312393325457366304103888934, 1490221075739321877604231759426844710
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..15.
Thomas W. Cusick and Yuri L. Borissov, A refinement of Cusick-Cheon bound for the second order binary Reed-Muller code, Discrete Math. 310 (2010), no. 24, 3537--3543. MR2734734 (2011j:94188).
|
|
FORMULA
|
See Maple code.
|
|
MAPLE
|
f:=proc(n) add( 2^(h*(h+1)+1)*
mul( 2^(n-i)-1, i=0..2*h)/mul(2^(2*j)-1, j=1..h),
h=1..floor(n/2))+(2^(n+1)-2); end;
[seq(f(n), n=1..25)];
|
|
MATHEMATICA
|
f[n_] := Sum[2^(h(h+1)+1) Product[2^(n-i)-1, {i, 0, 2h}]/
Product[2^(2j)-1, {j, 1, h}], {h, 1, n/2}]+(2^(n+1)-2);
Array[f, 25] (* Jean-François Alcover, Mar 24 2021, after Maple code *)
|
|
CROSSREFS
|
Sequence in context: A097419 A219037 A156458 * A136268 A030242 A037293
Adjacent sequences: A244491 A244492 A244493 * A244495 A244496 A244497
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Jul 05 2014
|
|
STATUS
|
approved
|
|
|
|